

Draft Assessment Report

Evaluation of Active Substances

Plant Protection Products

Prepared according to **Regulation (EC) 1107/2009** as it applies in Great Britain

Bixlozone (F9600)

List of Endpoints

Great Britain July 2022

Version History

When	What
July 2022	Initial DAR
September 2022	Updated post July 2022 Expert Committee on Pesticides (ECP) meeting Independent Scientific Advice (ISA)

Evaluator	Month and year	Active Substance
HSE	July 2022	Bixlozone (F9600)

Section 1 Identity, Physical and Chemical Properties, Details of Uses, Further Information, Methods of Analysis

Identity, Physical and Chemical Properties, Details of Uses, Further Information (Regulation (EU) N° 283/2013, Annex Part A, points 1.3 and 3.2)

Active substance (ISO Common Name)	Bixlozone (ISO provisionally approved)				
Function (e.g. fungicide)	Herbicide				
Evaluator	HSE				

Identity (Regulation (EU) N° 283/2013, Annex Part A, point 1)

Chemical name (IUPAC)	2-[(2,4-dichlorophenyl)methyl]-4,4-dimethyl-1,2- oxazolidin-3-one
Chemical name (CA)	2-[(2,4-dichlorophenyl)methyl]-4,4-dimethyl-3- isoxazolidinone
CIPAC No	Not assigned
CAS No	81777-95-9
EC No (EINECS or ELINCS)	Not assigned
FAO Specification (including year of publication)	No FAO Specifcation
Minimum purity of the active substance as manufactured	960 g/kg
Identity of relevant impurities (of toxicological, ecotoxicological and/or environmental concern) in the active substance as manufactured	(2,4-dichlorophenyl)methanol (CAS 1777-82-8; 2,4-dichlorobenzyl alcohol): Maximum 1.5 g/kg
Molecular formula	C ₁₂ H ₁₃ Cl ₂ NO ₂
Molar mass	274.14 g/mol
Structural formula	

Evaluator	Month and year	Active Substance
HSE	July 2022	Bixlozone (F9600)

Section 1 Identity, Physical and Chemical Properties, Details of Uses, Further Information, Methods of Analysis

Physical and chemical properties (Regulation (EU) N° 283/2013, Annex Part A, point 2)

Melting point (state purity)	81.5 °C (99.8%)				
Boiling point (state purity)	Decomposes before boiling (99.8%)				
Temperature of decomposition (state purity)	188 °C (99	.8%)			
Appearance (state purity)	Pure: White crystalline sloid (99.8%) Technical: Pale yellow crystalline solid (96.0%)				
Vapour pressure (state temperature, state purity)		Pa at 20 °C (99.9%) Pa at 25 °C (99.9%)			
Henry's law constant (state temperature)	7.2 x 10 ⁻³ P	Pa m ³ mol ⁻¹ (at 20 °C)			
Solubility in water (state temperature, state purity and pH)	42 mg/L at 40 mg/L at	20 °C (purified water) (99.9%) 20 °C (pH 4) (99.9%) 20 °C (pH 7) (99.9%) 20 °C (pH 9) (99.9%)			
Solubility in organic solvents (state temperature, state purity)	Methanol: Acetone: Tolune: Dichloromethane: Ethyl acetate: n-Heptane: n-Octanol:	120 g/L at 20 °C (96.0%) >250 g/L at 20 °C (96.0%) 14 g/L at 20 °C (96.0%) 52 g/L at 20 °C (96.0%)			
Surface tension (state concentration and temperature, state purity)	66.5 mN/m at 20 °C ((90 % saturated solution) (99.8%)			
Partition coefficient (state temperature, pH and purity)	3.3 at 20	°C (pH 4) (99.9%) °C (pH 7) (99.9%) °C (pH 9) (99.9%)			
Dissociation constant (state purity)		ontain any groups that are ionisable ntally relevant pH range			

Evaluator	Month and year	Active Substance
HSE	July 2022	Bixlozone (F9600)

Section 1 Identity, Physical and Chemical Properties, Details of Uses, Further Information, Methods of Analysis

UV/VIS absorption (max.) incl. ϵ (state purity, pH)

20.43 mg/L solution (99.8%):						
	$\lambda_{max} (nm)$	ϵ (L mol ⁻¹ cm ⁻¹)				
Neutral	218	14100				
	226	12500				
	233	7050				
Acidic	218	14300				
(pH 1.1)	226	12700				
	233	7140				
Basic	226	12300				
(pH 13.0)	233	6920				

999.2 mg/L solution (99.8%):

	$\lambda_{max} (nm)$	ϵ (L mol ⁻¹ cm ⁻¹)
Neutral	261	445
	271	361
	280	259
	290	4.64
Acidic	261	444
(pH 1.1)	271	359
	280	258
	290	1.54
Basic (pH 13.0)	261	445
	271	361
	280	259
	290	1.62

Flammability (state purity) Explosive properties (state purity) Oxidising properties (state purity)

Not highly flammable (96.0%)

No explosive properties (96.0%)

No oxidising properties (96.0%)

Evaluator	Month and year	Active Substance
HSE	July 2022	Bixlozone (F9600)

Section 1 Identity, Physical and Chemical Properties, Details of Uses, Further Information, Methods of Analysis

Summary of representative uses evaluated, for which all risk assessments needed to be completed (Bixlozone) (Regulation (EU) N° 284/2013, Annex Part A, points 3, 4)

Crop			F	Pests or	Prepa	aration		Applic	ation		Applicati	on rate per	treatment		
and/or situation (a)	Region	Product name	G or I (b)	Group of pests controlled (c)	Type (d-f)	Conc. a.s. (i)	method kind (f-h)	range of growth stages & season (j)	number min-max (k)	Interval between application (min)	kg a.s /hL min-max (l)	Water L/ha min-max	g a.s./ha min-max (1)	PHI (days) (m)	Remarks
Winter wheat Winter barley	GB	F9600- 4SC	F	Grasses and broad leaved weeds	SC	400 g/L	Broad cast soil applic ation	BBCH 00-09	1	-	-	150- 400	200	-	
Winter wheat	GB	F9600- 4SC	F	Grasses and broad leaved weeds	SC	400 g/L	Broad cast soil applic ation	BBCH 11-13	1	-	-	150- 400	200	-	
Winter Oilseed rape	GB	F9600- 4SC	F	Grasses and broad leaved weeds	SC	400 g/L	Broad cast soil applic ation	BBCH 00-09	1	-	-	150- 400	200-300	-	
Maize	GB	F9600- 4SC	F	Grasses and broad leaved weeds	SC	400 g/L	Broad cast soil applic ation	BBCH 00-09	1	-	-	150- 400	250-375	-	

 (b) Outdoor or field use (F), greenhouse application (G) or indoor application (I) (c) e.g. biting and sucking insects, soil born insects, foliar fungi, weeds (d) e.g. wettable powder (WP), emulsifiable concentrate (EC), granule (GR) (e) CropLife International Technical Monograph no 2, 6th Edition. Revised May 2008. Catalogue of pesticide (f) All abbreviations used must be explained (g) Method, e.g. high volume spraying, low volume spraying, spreading, dusting, drench (k) Indicate the minimum and maximum number of applications possible under practical conditions of us (1) The values should be given in g or kg whatever gives the more manageable number (e.g. 200 kg/h) 	(a) For crops, the EU and Codex classifications (both) should be taken into account; where relevant, the use	
 (c) <i>e.g.</i> biting and sucking insects, soil born insects, foliar fungi, weeds (d) <i>e.g.</i> wettable powder (WP), emulsifiable concentrate (EC), granule (GR) (e) CropLife International Technical Monograph no 2, 6th Edition. Revised May 2008. Catalogue of pesticide (f) All abbreviations used must be explained (g) Method, e.g. high volume spraying, low volume spraying, spreading, dusting, drench (g) Method, e.g. high volume spraying, low volume spraying, spreading, dusting, drench (g) Method, e.g. high volume spraying, low volume spraying, spreading, dusting, drench (h) Growth stage range from first to last treatment (BBCH Monograph, Growth Stages of Plants, 1997, Blackwell, ISBN 3-8263-3152-4), including where relevant, information on season at time of applications possible under practical conditions of us (h) Indicate the minimum and maximum number of applications possible under practical conditions of us (h) The values should be given in g or kg whatever gives the more manageable number (e.g. 200 kg/h) 	situation should be described (e.g. fumigation of a structure)	the variant in order to compare the rate for same active substances used in different variants (e.g.
 (d) <i>e.g.</i> wettable powder (WP), emulsifiable concentrate (EC), granule (GR) (e) CropLife International Technical Monograph no 2, 6th Edition. Revised May 2008. Catalogue of pesticide (f) All abbreviations used must be explained (g) Method, e.g. high volume spraying, low volume spraying, spreading, dusting, drench (j) Growth stage range from first to last treatment (BBCH Monograph, Growth Stages of Plants, 1997, Blackwell, ISBN 3-8263-3152-4), including where relevant, information on season at time of applications possible under practical conditions of us (k) Indicate the minimum and maximum number of applications possible under practical conditions of us (l) The values should be given in g or kg whatever gives the more manageable number (e.g. 200 kg/h) 	(b) Outdoor or field use (F), greenhouse application (G) or indoor application (I)	fluoroxypyr). In certain cases, where only one variant is synthesised, it is more appropriate to
 (e) CropLife International Technical Monograph no 2, 6th Edition. Revised May 2008. Catalogue of pesticide (f) All abbreviations used must be explained (g) Method, e.g. high volume spraying, low volume spraying, spreading, dusting, drench (k) Indicate the minimum and maximum number of applications possible under practical conditions of us (1) The values should be given in g or kg whatever gives the more manageable number (e.g. 200 kg/h) 	(c) <i>e.g.</i> biting and sucking insects, soil born insects, foliar fungi, weeds	give the rate for the variant (e.g. benthiavalicarb-isopropyl).
pesticideapplication(f) All abbreviations used must be explained(k) Indicate the minimum and maximum number of applications possible under practical conditions of us(g) Method, e.g. high volume spraying, low volume spraying, spreading, dusting, drench(l) The values should be given in g or kg whatever gives the more manageable number (e.g. 200 kg/h)	(d) <i>e.g.</i> wettable powder (WP), emulsifiable concentrate (EC), granule (GR)	(j) Growth stage range from first to last treatment (BBCH Monograph, Growth Stages of Plants, 1997,
 (f) All abbreviations used must be explained (g) Method, e.g. high volume spraying, low volume spraying, spreading, dusting, drench (k) Indicate the minimum and maximum number of applications possible under practical conditions of us (l) The values should be given in g or kg whatever gives the more manageable number (e.g. 200 kg/h) 	(e) CropLife International Technical Monograph no 2, 6th Edition. Revised May 2008. Catalogue of	Blackwell, ISBN 3-8263-3152-4), including where relevant, information on season at time of
(g) Method, e.g. high volume spraying, low volume spraying, spreading, dusting, drench (1) The values should be given in g or kg whatever gives the more manageable number (e.g. 200 kg/h	pesticide	application
	(f) All abbreviations used must be explained	
(h) Kind, <i>e.g.</i> overall, broadcast, aerial spraying, row, individual plant, between the plant- type of equipment instead of 200 000 g/ha or 12.5 g/ha instead of 0.0125 kg/ha	(h) Kind, e.g. overall, broadcast, aerial spraying, row, individual plant, between the plant- type of equipment	instead of 200 000 g/ha or 12.5 g/ha instead of 0.0125 kg/ha
used must be indicated (m) PHI - minimum pre-harvest interval	used must be indicated	(m) PHI - minimum pre-harvest interval

Evaluator	Month and year	Active Substance
HSE	July 2022	Bixlozone (F9600)

Section 1 Identity, Physical/ Chemical Properties, Details of Uses, Further Information, Methods of Analysis

Further information, Efficacy

Effectiveness (Regulation (EU) N° 284/2013, Annex Part A, point 6.2)

The representative uses/ GAPs are supported.

Adverse effects on field crops (Regulation (EU) N° 284/2013, Annex Part A, point 6.4)

The representative uses/ GAPs are supported.

Observations on other undesirable or unintended side-effects (Regulation (EU) N° 284/2013, Annex Part A, point 6.5)

The representative uses/ GAPs are supported.

Groundwater metabolites: Screening for biological activity (SANCO/221/2000-rev.10-final Step 3 a Stage 1)

Activity against target organism

Met1	Met2	Met3	Met4	Met5	Met6
no	n/a	n/a	n/a	n/a	n/a

Evaluator	Month and year	Active Substance
HSE	July 2022	Bixlozone (F9600)

Section 1 Identity, Physical/ Chemical Properties, Details of Uses, Further Information, Methods of Analysis

Methods of Analysis

Analytical methods for the active substance (Regulation (EU) N° 283/2013, Annex Part A, point 4.1 and Regulation (EU) N° 284/2013, Annex Part A, point 5.2)

Technical a.s. (analytical technique)

Impurities in technical a.s. (analytical technique)

Plant protection product (analytical technique)

HPLC-UV HPLC-DAD, LC-MS, GC-FID

Bixlozone : HPLC-DAD

(2,4-dichlorophenyl)methanol: Data required

Analytical methods for residues (Regulation (EU) N° 283/2013, Annex Part A, point 4.2 & point 7.4.2)

Residue definitions for monitoring/enforcement purposes

Food of plant origin	Bixlozone
Food of animal origin	Bixlozone
Soil	2,4-dichlorobenzoic acid
Sediment	Bixlozone
Water surface	Bixlozone
drinking/ground	2,4-dichlorobenzoic acid
Air	Bixlozone
Body fluids and tissues	5-keto-hydrate-bixlozone

Monitoring/Enforcement methods

Food/feed of plant origin (analytical technique and	LC-MS/MS (bixlozone)	
LOQ for methods for monitoring purposes)	LOQ: 0.01 mg/kg for high water, high acid, high oil and high starch crop groups	
	No ILV data for high water or high statrch (dry) crops	
	Method not validated for high protein crops	
Food/feed of animal origin (analytical technique	LC-MS/MS (bixlozone)	
and LOQ for methods for monitoring purposes)	LOQ: 0.01 mg/kg for all commodities	
Soil (analytical technique and LOQ)	LC-MS/MS (bixlozone, 2,4- dichlorobenzoic acid)	
	LOQ: 0.005 mg/kg	
Water (analytical technique and LOQ)	LC-MS/MS (bixlozone, 2,4- dichlorobenzoic acid, bixlozone-3-OH propanamide, 4-carboxy-bixlozone, bixlozone-dimethyl malonamide)	
	LOQ: 0.1 μ g/L in drinking and surface water	
Air (analytical technique and LOQ)	LC-MS/MS (bixlozone)	
	LOQ: 0.36 µg/m ³	

Evaluator	Month and year	Active Substance
HSE	July 2022	Bixlozone (F9600)

Section 1 Identity, Physical/ Chemical Properties, Details of Uses, Further Information, Methods of Analysis

Body fluids and tissues (analytical technique and LOQ)

LC-MS/MS (5-keto-hydrate-bixlozone) LOQ: 0.01 mg/kg in urine and liver

Classification and labelling with regard to physical and chemical data (Regulation (EU) N° 283/2013, Annex Part A, point 10)

Substance

Harmonised classification according to Regulation (EC) No 1272/2008 and its Adaptations to Technical Process [Table 3.1 of Annex VI of Regulation (EC) No 1272/2008 as amended]¹:

Peer review proposal ² for harmonised classification according to Regulation (EC) No 1272/2008:

Bixlozone	
	Not classified.
	Not classified.

¹ Regulation (EC) No 1272/2008 of the European Parliament and of the Council of 16 December 2008 on classification, labelling and packaging of substances and mixtures, amending and repealing Directives 67/548/EEC and 1999/45/EC, and amending Regulation (EC) No 1907/2006. OJ L 353, 31.12.2008, 1-1355.

² It should be noted that harmonised classification and labelling is formally proposed and decided in accordance with Regulation (EC) No 1272/2008. Proposals for classification made in the context of the evaluation procedure under Regulation (EC) No 1107/2009 are not formal proposals.

Evaluator	Month and year	Active Substance
HSE	July 2022	Bixlozone (F9600)

Section 2 Mammalian Toxicology

Impact on Human and Animal Health

Absorption, distribution, metabolism and excretion (toxicokinetics) (Regulation (EU) N° 283/2013, Annex Part A, point 5.1)

Rate and extent of oral absorption/systemic bioavailability

Estimated oral absorption (sum of radioactivity in urine & tissues excluding faeces after single low dose of 5 mg/kg bw): 70%

Die voilobility (to visolvingting study ofter single 1

Toxicokinetics

Bioavailability (toxicokinetics study after single low dose of 5 mg/kg bw): 70%			
[¹⁴ C-Phenyl]-bixlo	ozone		
5 mg/kg bw (oral)	, single dose:		
	Male	Female	
C _{max} [ng/mL]	174	293	
T _{max} [h]	0.25	0.25	
Half-life [h]	145	221	
AUC0→∞			
[µg Eq*h/g]			
Bioavailability	70	86	
(%) total RA			
Bioavailability	11	18	
(%) plasma			
1000 mg/kg bw (o	ral), single dose	:	
	Male	Female	
C _{max} [ng/mL]	9565	15060	
T _{max} [h]	3.5	3.5	
Half-life [h]	11	14	
AUC0→∞	10.5x10 ⁵	35.9x10 ⁵	
[ng Eq*h/mL]			
Bioavailability (%) total RA	58	60	
Bioavailability (%) plasma	39	100	
5 mg/kg bw (oral)	repeated dose:		
	Male	Female	
C _{max} [ng/mL]	71	166	
T _{max} [h]	0.0	0.25	
Half-life [h]	11	14	
AUC0→∞	65	162	
[ng Eq*h/mL]			
Bioavailability	58	79	
(%) total RA			
Bioavailability	5	13	
(%) plasma			
3 mg/kg bw (i.v.)	single dose:		
	Male	Female	
C _{max} [ng/mL]	1317	1195	
T _{max} [h]	0.08	0.08	
Half-life [h]	2.0	2.7	
AUC0→∞	801	761	
		4	

Evaluator	Month and year		Active Substa	ince
HSE	July 2022		Bixlozone (F9	600)
Section 2 Mammalian Toxico	logy			
		[ng Eq*h/mL]	5 0	<u></u>
		Bioavailability (%) total RA	58	60
		Bioavailability	39	100
		(%) plasma		
Distribution		Widely distributed. Highest tissue level of administered dos liver (~5 % of AD)	ls in gastrointestina se (AD)), carcass (up to 24 % of AD),
Potential for bioaccumulation		No		
Rate and extent of excretion		Rapid and extensiv h), Main route: urine Males: urine 62 – 7 Females: urine 79 –	4 %; faeces: 21 – ;	34 %
Metabolism in animals		Extensively metabolites.	olised (> 99 % of	the AD) to up to 40
		Major metabolites to of the AD in both s mg/kg bw): 2,4-dic % in F) and 5-keto- in F).	exes in urine after hlorohippuric acid	single dose at 5 (12 % in M; 14.5
		Major metabolites 1 % of the AD in bot mg/kg bw): carbam keto-hydrate-bixloz	h sexes in urine af hic acid (10 % in N	ter single dose at 5 1; 18 % in F) and 5-
		-		a rats: hydroxylation and its derivatives.
			xylation and deam	d a combination of ination followed by
In vitro metabolism			incubation 4	e, dog and human hours with [¹⁴ C]-
		Metabolism: ≈ 100 86-92 % in mouse a		dog, 72-87 % in rat, man hepatocytes.
		(hydroxylation) an metabolic pathway	d conjugation (gl ys drawn from pocytes are similar t	species: oxidation lucuronidation); the the metabolism of to those identified in bixlozone.
		human hepatocy production of 4-0	tes however a OH-Me-bixlozone	ite was identified in a disproportionate was observed in the other species,
		Evaluation of the t	oxicological relev	ance of this finding

Evaluator	Month and year	Active Substance
HSE	July 2022	Bixlozone (F9600)
Section 2 Mammalian Toxicology		

	showed that 4-OH-Me-bixlozone has a comparable toxicity profile that of the parent substance bixlozone.
Toxicologically relevant compounds (animals and plants)	Bixlozone, 5-hydroxy-bixlozone, 5-hydroxy-bixlozone- glucuronide and 2,4-dichlorobenzoic acid (CAS 50-84-0)
Toxicologically relevant compounds (environment)	None

Acute toxicity (Regulation (EU) N° 283/2013, Annex Part A, point 5.2)

Rat LD ₅₀ oral	> 2000 mg/kg bw	
Rat LD ₅₀ dermal	> 2000 mg/kg bw	
Rat LC ₅₀ inhalation	> 2.11 mg/L air /4h, nose only	
Skin irritation	Non-irritant	
Eye irritation	Non-irritant	
Skin sensitisation	Not sensitising (LLNA)	
Phototoxicity	Not required	

Short-term toxicity (Regulation (EU) N° 283/2013, Annex Part A, point 5.3)

Target organ / critical effect	Rat: ↓ body weight & body weight gain, liver (↑ relative weight > 15 %, hypertrophy and clinical chemistry), kidney (↑ relative weight)
	Mouse: ↓ body weight & body weight gain, liver (↑ relative weight > 15 %, histopathology and clinical chemistry)
	Dog: ↓ body weight & body weight gain (diet), liver (↑ relative weight > 15 %, hypertrophy)
Relevant oral NOAEL	Rat: 29 (M) / 37 (F) mg/kg bw/day (90-day) Dog: 100 (M) / 30 (F) mg/kg bw/day (90-day) Mouse: 180 (M) / 257 (F) mg/kg bw/day (90- day)
Relevant dermal NOAEL	21-day, rat: 1000 mg/kg bw/day
Relevant inhalation NOAEL	No data - not required

Genotoxicity (Regulation (EU) N° 283/2013, Annex Part A, point 5.4)

In vitro studies	Reverse mutation assay (Ames Test) – negative.	
	<i>In vitro</i> chromosome aberration assay (CHO cells) -S9 negative; +S9 positive	
	L5178Y/TK+/- Mouse Lymphoma cells	

Evaluator	Month and year	Active Substance	
HSE	July 2022	Bixlozone (F9600)	
Section 2 Mammalian Toxicol	ogy		
		mutagenicity study(MLA) – negative.	
In vivo studies		<i>In vivo</i> (oral gavage) micronucleus test in rat bone marrow – negative with clear evidence of systemic exposure in bone marrow.	
Photomutagenicity		No data - not required.	
Potential for genotoxicity		bixlozone is unlikely to be genotoxic	
Long-term toxicity and carc	inogenicity (Reg	ulation (EU) N°283/2013, Annex Part A, point	5.5)
Long-term effects (target organ/critical effect)		Rat: ↓ body weight gain, liver (↑ relative weight > 15 % and hepatocellular hypertrophy (both sexes), clinical chemistry (females))	
		Mouse: Higher incidences of reduced epididymal sperm and inflammation of the glandular stomach	
Relevant long-term NOAEL		2-year, rat: 41 (M) / 53 (F) mg/kg bw/day 18-month, mouse: 32 (M) mg/kg bw/day	
Carcinogenicity (target organ, tu	mour type)	Rat: no treatment-related increase in tumour incidence	
		Mouse: no treatment-related increase in tumour incidence	
		Bixlozone is unlikely to be carcinogenic.	
Relevant NOAEL for carcinoger	iicity	2-year, rat: 167 (M) / 217 (F) mg/kg bw/day; 18-month, mouse: 647 (M) / 834 (F) mg/kg bw/day	

Reproductive toxicity (Regulation (EU) N° 283/2013, Annex Part A, point 5.6) Reproduction toxicity

Reproduction target / critical effect	Parental toxicity (rat): ↓ body weight & body weight gain, liver (↑ relative weight > 15 %, hypertrophy and clinical chemistry), kidney (↑ weight)
	Reproductive toxicity: no adverse effects observed in the 2-generation rat study
	Offspring's toxicity: $\downarrow F_2$ pup body weight and body weight gain during the pre-weaning period
	Bixlozone is unlikely to be a reproductive toxicant.
Relevant parental NOAEL Relevant reproductive NOAEL	34 (M) / 49 (F) mg/kg bw/day
	140 (M) / 187(F) mg/kg bw/day
Relevant offspring NOAEL	34 (M) / 49 (F) mg/kg bw/day

Evaluator	Month and year	Active Substance
HSE	July 2022	Bixlozone (F9600)

Section 2 Mammalian Toxicology

Developmental toxicity

Developmental target / critical effect	Rat:
	Maternal toxicity: Fur staining, ↓ food consumption and body weight gains, liver (↑ relative weight and hypertrophy)
	Developmental toxicity: no adverse effects
	Rabbit:
	Maternal toxicity in dose-range finding study: ↑ mortality, ↓ body weight, food consumption and defecation at 750 mg/kg bw/day
	Maternal toxicity in main study: ↓ body weight gain, food consumption and defecation at GD 13-20 at 400 mg/kg bw/day
	Developmental toxicity: no adverse effects
	Bixlozone is unlikely to be a developmental toxicant.
Relevant maternal NOAEL	Rat: 75 mg/kg bw/day
	Rabbit: 400 mg/kg bw/day
Relevant developmental NOAEL	Rat: 550 mg/kg bw/day (highest dose)
	Rabbit: 400 mg/kg bw/day (highest dose)

Neurotoxicity (Regulation (EU) N° 283/2013, Annex Part A, point 5.7)

Acute neurotoxicity	No indications of specific neurotoxic effects up to top dose of 2000 mg/kg bw	
Repeated neurotoxicity	No indications of neurotoxicity (90 day rat study including neurotoxicity assessment)	
Additional studies (e.g. delayed neurotoxicity, developmental neurotoxicity)	Not required	

Other toxicological studies (Regulation (EU) N° 283/2013, Annex Part A, point 5.8)

Supplementary studies on the active substance	Palatability 7-days studies in mice, rats and dogs. Palatability-related issues seen in the dog, but not in the rat and mouse.
Endocrine disrupting properties	Evaluation was based on the standard regulatory studies and available data.
	For the EAS and T modalities bixlozone is not an ED. The ED potential has been sufficiently investigated.
Studies performed on metabolites or impurities	Metabolites:
	2,4-dichlorobenzoic acid (2,4-DBA, CAS 50-84-0)
	Acute oral toxicity (mouse): LD50 of 830 mg/kg bw
	In vitro Salmonella typhimurium reverse mutation

HSE July 2022 Bixlozone (F9600) Section 2 Mammalian Toxicology [Ames) test: Negative In vitro micronucleus assay: Negative Hprt gene mutation assay in CHO-K Icells: Negative. Metabolites occurring at significant levels in plant and livestock metabolism studies: 51-hydroxy-biclozone, 5-hydroxy-biclozone, 6-C ramer class III TCC chronic value of 1.5 µg/kg bw/day and acute value of 5 µg/kg bw²could be used in a conservative first-firer assessment. The metabolite 5-hydroxy-biclozone is a putative major rat metabolite 5-hydroxy-biclozone. On this basis, its toxicity profile could be considered 1-biclozone since i only differs from it by the presence of 1.5 µg/kg bw/day and acute value of 5 µg/kg bw²could be used in a conservative first-ther assessment. The metabolite 5-hydroxy-biclozone is a putative major rat metabolite 5-hydroxy-biclozone. On this basis, its toxicity profile could be considered 1-biclozone first more rate of this conce and the thore onsigned form of 5-hydroxy-biclozone. On this basis, its toxicity profile could be considered 1-biclozone and biclozone (5-hydroxy-biclozone.	Evaluator	Month and year	Active Substance
(Ames) test: Negative In vitro micronucleus assay: Negative Hprt gene mutation assay in CHO-K1 cells: Negative. Metabolites occurring at significant levels in plant and livestock metabolits mutaties: 52-hydroxy-bixlozone, 55- hydroxy-bixlozone, 51-hydroxy-bixlozone, 55- hydroxy-bixlozone, 51-hydroxy-bixlozone, 55- hydroxy-bixlozone, 51-hydroxy-bixlozone, 51- hydroxy-bixlozone, 51-hydroxy-bixlozone, 61- hixlozone, 51-hydroxy-bixlozone, 61-hydroxy propionic acid, 2,4-dichlorobenzoie, acid, bixlozone-c1-00-H propananide_utilet, 22-adimethyl-malonic, acid. The metabolite 51-hydroxy-bixlozone is not a major metabolite in rats. Although it is structurally very similar to bixlozone (it only differs from it by the presence of an additional hydroxy group on the phenyl ring) as confirmed by the comparative in silico analysis, it would be more prudent not to assume equivalence with the parent in relation to general toxicity as the reliability of QSAR predictions for complex endopoints is generally low. Having excluded genotoxicity by QSAR analysis, if a risk assessment were to be required for 51-hydroxy- bixlozone, the Cramer class III TC chronic value of 1.5 µg/kg bw/day and acute value of 5 µg/kg bw ² could be used in a conservative first-tier assessment. The metabolite 5-hydroxy-bixlozone is a putative major rat metabolite considered to be covered via its downstream metabolite 5-hydroxy-bixlozone. On this basis, its toxicity profile could be considered 'covered' by the parent. It is structurally very similar to bixlizone since it only differs from it by the presence of an additional hydroxy group on the isoxazolitoner ring. No additional hydroxy prolocy could be considered 'covered' by the parent. It is structurally very similar to bixlizone since it only differs from it by the presence of an additional hydroxy prolocy-bixlozone. Overall, the toxicological properties of 5-hydroxy- bixlozone and 5-hydroxy-bixlozone. Guernonide is severe to xicity profile than 5-hydroxy-bixlozone. Overall, the toxicological properties o	HSE	July 2022	Bixlozone (F9600)
(Ames) test: Negative In vitro micronucleus assay: Negative Hprt gene mutation assay in CHO-K1 cells: Negative. Metabolites occurring at significant levels in plant and livestock metabolits mutaties: 52-hydroxy-bixlozone, 55- hydroxy-bixlozone, 51-hydroxy-bixlozone, 55- hydroxy-bixlozone, 51-hydroxy-bixlozone, 55- hydroxy-bixlozone, 51-hydroxy-bixlozone, 51- hydroxy-bixlozone, 51-hydroxy-bixlozone, 61- hixlozone, 51-hydroxy-bixlozone, 61-hydroxy propionic acid, 2,4-dichlorobenzoie, acid, bixlozone-c1-00-H propananide_utilet, 22-adimethyl-malonic, acid. The metabolite 51-hydroxy-bixlozone is not a major metabolite in rats. Although it is structurally very similar to bixlozone (it only differs from it by the presence of an additional hydroxy group on the phenyl ring) as confirmed by the comparative in silico analysis, it would be more prudent not to assume equivalence with the parent in relation to general toxicity as the reliability of QSAR predictions for complex endopoints is generally low. Having excluded genotoxicity by QSAR analysis, if a risk assessment were to be required for 51-hydroxy- bixlozone, the Cramer class III TC chronic value of 1.5 µg/kg bw/day and acute value of 5 µg/kg bw ² could be used in a conservative first-tier assessment. The metabolite 5-hydroxy-bixlozone is a putative major rat metabolite considered to be covered via its downstream metabolite 5-hydroxy-bixlozone. On this basis, its toxicity profile could be considered 'covered' by the parent. It is structurally very similar to bixlizone since it only differs from it by the presence of an additional hydroxy group on the isoxazolitoner ring. No additional hydroxy prolocy could be considered 'covered' by the parent. It is structurally very similar to bixlizone since it only differs from it by the presence of an additional hydroxy prolocy-bixlozone. Overall, the toxicological properties of 5-hydroxy- bixlozone and 5-hydroxy-bixlozone. Guernonide is severe to xicity profile than 5-hydroxy-bixlozone. Overall, the toxicological properties o	Section 2 Mammalian Toxico	logy	
In vitro micronucleus assay: Negative Hprt gene mutation assay in CHO-K1cells: Negative. Metabolites occurring at significant levels in plant and livestock metabolism studies: 5'-hydroxy-bixlozone, 5- hydroxy-bixlozone, 5-hydroxy-bixlozone-intervention acid, 2-4-dichlorobenzoic acid, bixlozone-3-OH- propananide sulfate, 2,2-dimethyl-3-hydroxy propionic acid, 2-4-dichlorobenzoic acid, bixlozone-dimethyl- malonamide and dimethyl-malonic acid. The metabolite of 15-hydroxy-bixlozone is not a major metabolite in rats. Although it is structurally very similar to bixlozone (it only differs from it by the presence of an additional hydroxy group on the phenyt ring) as confirmed by the comparative in silco analysis, it would be more prudent not to assume equivalence with the parent in relation to general toxicity by QSAR analysis, if a risk assessment were to be required for 5'-hydroxy- bixlozone, the Cramer class III TTC chronic value of 1.5 µg/kg bw/day and acute value of 5 µg/kg bw ² could be used in a conservative first-tier assessment. The metabolite 5-kto-hydrate-bixlozone. On this basis, its to xicity profile could be covered via its downstream metabolite 5-kto-hydrate-bixlozone. On this basis, its to xicity profile could be researed in additional hydroxy group on the isosazoidinone ring. No additional hydroxy propy on the isosazoidinone ring. No additional hydroxy proxy on the isosazoidinone ring. No additional hydroxy proxy on the isosazoidinone ring. No additional hydroxy protop isolozone, as major rat metabolite y covered is us the metabolite for generatoribix tested in the toxicological properies of 5-hydroxy- bixlozone and 5-hydroxy-bixlozone.			
In vitro micronucleus assay: Negative Hprt gene mutation assay in CHO-K1cells: Negative. Metabolites occurring at significant levels in plant and livestock metabolism studies: 5'-hydroxy-bixlozone, 5- hydroxy-bixlozone, 5-hydroxy-bixlozone-interuronide, bixlozone: 3-OH proparantide, bixlozone: 3-OH propanantide-sulfate, 2.2-dimethyl-3-hydroxy propionic acid, 2.4-dichlorohenzoic acid, bixlozone-dimethyl- malonamide and dimethyl-malonic acid. The metabolite of 15-hydroxy-bixlozone is not a major metabolite in rats. Although it is structurally very similar to bixlozone (it only differs from it by the presence of an additional hydroxy group on the phenyt ring), it would be more prudent not to assume equivalence with the parent in relations for complex endpoints is generally low. Having excluded genotoxicity by QSAR analysis, if a risk assessment were to be required for 5'-hydroxy- bixlozone, the Cramer class III TTC chronic value of 1.5 µg/kg bw/day and acute value of 5 µg/kg bw ² could be used in a conservative first-tier assessment. The metabolite 5-kto-hydrate-bixlozone. On this basis, its to xicity profile could be covered via its downstream metabolite 5-kto-hydrate-bixlozone. On this basis, its to xicity profile could be researed of an additional hydroxy group on the isosazoidinone ring. No additional in site anter of hydroxy-bixlozone. Solution hydroxy-bixlozone, gluerronide) is expected to have a comparable or less severe to xicity profile than 5-hydroxy-bixlozone. Overall, the toxicological properies of 5-hydroxy-bixlozone. Severe to xicity profile than 5-			(Ames) test: Negative
Hprt gene mutation assay in CHO-K1cells: Negative. Metabolites occurring at significant levels in plant and livestock metabolism studies: 5'-hydroxy-bixlozone, 5- hydroxy-bixlozone, 5-hydroxy-bixlozone-glucuronide, bixlozone, 5-hydroxy-bixlozone-glucuronide, bixlozone, 5-hydroxy-bixlozone-glucuronide, bixlozone, 5-hydroxy-bixlozone dimethyl- malonamide and dimethyl-manolic acid. The metabolite is 7'-hydroxy-bixlozone is not a major metabolite in rats. Although it is structurally very similar to bixlozone (it only differs from it by the presence of an additional hydroxy group on the phenyl ring) as confirmed by the comparative in silico analysis, it would be more prudent not to assume equivalence with the parent in relation to general toxicity as the reliability O QSAR predictions for complex endpoints is generally low. Having excluded genotoxicity by QSAR analysis, if a risk assessment were to be required for 5'-hydroxy- bixlozone, the Cramer class III TTC chronic value of 1.5 µg/kg by/day and acute value of 5 -hydroxy- bixlozone. the Cramer class III TTC chronic value of 1.5 µg/kg by/day and acute value of 5 -hydroxy- bixlozone. Since it only differs from it by the presence of an additional hydroxy group on the isoaxolidinone ring. No additional hydroxy group on the isoaxolidinone ring. No additional hydroxy group on the isoaxolidinone ring. No additional hydroxy hydroxy-bixlozone. glucuronidg: is expected to have a comparable or less severe toxicity profile than 5-hydroxy-bixlozone. glucuronidg: is expected to have a considered to no d'5-hydroxy-bixlozone (5-hydroxy-bixlozone. glucuronidg: is expected to have a considered to no differ from it by the presence of an additional hydroxy profile than 5-hydroxy-bixlozone. glucuronidg: is expected to have a considered to have been intrinsically tested in the toxicological properties of 5-hydroxy- bixlozone and 5-hydroxy-bixlozone. glucuronidg: is expected to have a considered to have been intrinsically tested in the toxicologica			
Metabolites occurring at significant levels in plant and hivestock metabolism studies: 5'-hydroxy-bixlozone, 5:- hydroxy-bixlozone, 5-hydroxy-bixlozone glucuronide, bixlozone, 3-OH-propanamide, bixlozone-dimethyl- propanamide-auditate, 2.2-dimethyl-3-hydroxy propionic acid, 2.4-dichlorobenzoic acid, bixlozone-dimethyl- matonamide and dimethyl-malonic acid. The metabolite 5'-hydroxy-bixlozone is not a major metabolite in rats. Although it is structurally very similar to bixlozone (it only differs from it by the presence of an additional hydroxy group on the phenyl ring) as confirmed by the comparative <i>in silico</i> analysis, it would be more prudent not to assume equivalence with the parent in relation to general toxicity as the reliability of QSAR predictions for complex endpoints is generally low. Having excluded genotoxicity by QSAR analysis, if a risk assessment were to be required for 5'-hydroxy- bixlozone, the Cramer class III TTC chronic value of 1.5 µg/kg bw/day and acute value of 5 µg/kg bw ² could be used in a conservative first-tier assessment. The metabolite 5-hydroxy-bixlozone is a putative major rat metabolite considered to be covered via its downstream metabolite 5-keto-hydrate-bixlozone. On this basis, its toxicity profile could be considered 'covered' by the parent. It is structurally very similar to bixlozone since it only differs from it by the presence of an additional hydroxy gong on the isoazoidinoner ring. No additional <i>in silico</i> alerts were flagged for this metabolite for genotoxicity profile toxicity hazards compared to bixlozone. (5-hydroxy-bixlozone, glucuronide, is expected to have a comparable or less severe toxicity profile than 5-hydroxy-bixlozone. Overall, the toxicological properties of 5-hydroxy- bixlozone ad 5-hydroxy-bixlozone. Dverall, the toxicological properties of 5-hydroxy- bixlozone. Dverall, the toxicological properties of 5-hydroxy- bixlozone. 6-hydroxy-bixlozone. Dverall, the toxicological properties of 5-hydroxy- bixlozone and 5-hydroxy-bixlozone. Chydroxy-bixlozone			
livestock metabolism studies: 5 ⁻ -hydroxy-bislozone. <u>5</u> . hydroxy-bislozone <u>3</u> .OH-propananide, bislozone <u>3</u> .OH-propananide, bislozone <u>3</u> .OH-propananide, bislozone <u>3</u> .OH-propananide, bislozone-dimethyl-malonanide and dimethyl-malonic acid. The metabolite <u>5</u> -4-dichlorobenzoic acid, bislozone-dimethyl-malonanide and dimethyl-malonic acid. The metabolite <u>5</u> -hydroxy-bislozone is not a major metabolite in rats. Although it is structurally very similar to bislozone (it only differs from it by the presence of an additional hydroxy group on the phenyl ring) as confirmed by the comparative in silico analysis, it would be more prudent not to assume equivalence with the parent in relation to general toxicity as the reliability of QSAR predictions for complex endpoints is generally low. Having excluded genotoxicity by QSAR analysis, if a risk assessment were to be required for <u>5</u> -hydroxy-bislozone, the Cramer class III TTC chronic value of 1.5 µg/kg bw/day and acute value of 5 µg/kg bw² could be used in a conservative first-tier assessment. The metabolite <u>5</u> -hydroxy-bislozone is a putative major rat metabolite <u>5</u> -hydroxy-bislozone is a putative major rat metabolite <u>5</u> -hydroxy-bislozone. In additional hydroxy group on the isoxazolidinone ring. No additional hydroxy group on the isoxazolidinone ring. No additional hydroxy group on the isoxazolidinone ring. No additional hydroxy bislozone. In addition, the conjugated form of <u>5</u> -hydroxy-bislozone. In addition, the conjugated form of <u>5</u> -hydroxy-bislozone. In addition, the conjugated secong are at bislozone. In addition, the conjugated secong are at bislozone and <u>5</u> -hydroxy-bislozone <u>5</u> -hydroxy-bislozone.			npre gene manadon assay in erro micensi negative.
be used in a conservative first-tier assessment. The metabolite <u>5-hydroxy-bixlozone</u> is a putative major rat metabolite considered to be covered via its downstream metabolite 5-keto-hydrate-bixlozone. On this basis, its toxicity profile could be considered 'covered' by the parent. It is structurally very similar to bixlozone since it only differs from it by the presence of an additional hydroxy group on the isoxazolidinone ring. No additional <i>in silico</i> alerts were flagged for this metabolite for genotoxicity or general toxicity hazards compared to bixlozone. In addition, the conjugated form of 5-hydroxy-bixlozone (<u>5-hydroxy-bixlozone-</u> <u>glucuronide</u>) is expected to have a comparable or less severe toxicity profile than 5-hydroxy-bixlozone. Overall, the toxicological properties of 5-hydroxy- bixlozone and 5-hydroxy-bixlozone-glucuronide , as major rat metabolites, can be considered to have been intrinsically tested in the toxicological studies undertaken with bixlozone and thus these metabolites can be considered of equivalent toxicity to the parent substance and potential candidates for inclusion in the Residue Definition from a toxicological perspective. If a risk assessment were to be required for 5-hydroxy- bixlozone could be used.			livestock metabolism studies: 5'-hydroxy-bixlozone, 5- hydroxy-bixlozone, 5-hydroxy-bixlozone-glucuronide, bixlozone-3-OH-propanamide, bixlozone-3-OH- propanamide-sulfate, 2,2-dimethyl-3-hydroxy propionic acid, 2,4-dichlorobenzoic acid, bixlozone-dimethyl- malonamide and dimethyl-malonic acid. The metabolite 5'-hydroxy-bixlozone is not a major metabolite in rats. Although it is structurally very similar to bixlozone (it only differs from it by the presence of an additional hydroxy group on the phenyl ring) as confirmed by the comparative <i>in silico</i> analysis, it would be more prudent not to assume equivalence with the parent in relation to general toxicity as the reliability of QSAR predictions for complex endpoints is generally low. Having excluded genotoxicity by QSAR analysis, if a risk assessment were to be required for 5'-hydroxy- bixlozone, the Cramer class III TTC chronic value of
glucuronide) is expected to have a comparable or less severe toxicity profile than 5-hydroxy-bixlozone. Overall, the toxicological properties of 5-hydroxy- bixlozone and 5-hydroxy-bixlozone-glucuronide, as major rat metabolites, can be considered to have been intrinsically tested in the toxicological studies undertaken with bixlozone and thus these metabolites can be considered of equivalent toxicity to the parent substance and potential candidates for inclusion in the Residue Definition from a toxicological perspective. If a risk assessment were to be required for 5-hydroxy- bixlozone and 5-hydroxy-bixlozone-glucuronide, the dietary reference values of bixlozone could be used.			The metabolite <u>5-hydroxy-bixlozone</u> is a putative major rat metabolite considered to be covered via its downstream metabolite 5-keto-hydrate-bixlozone. On this basis, its toxicity profile could be considered 'covered' by the parent. It is structurally very similar to bixlozone since it only differs from it by the presence of an additional hydroxy group on the isoxazolidinone ring. No additional <i>in silico</i> alerts were flagged for this metabolite for genotoxicity or general toxicity hazards compared to bixlozone. In addition, the conjugated form
The memority <u>involutions of propulational</u> shares			<u>glucuronide</u>) is expected to have a comparable or less severe toxicity profile than 5-hydroxy-bixlozone. Overall, the toxicological properties of 5-hydroxy- bixlozone and 5-hydroxy-bixlozone-glucuronide , as major rat metabolites, can be considered to have been intrinsically tested in the toxicological studies undertaken with bixlozone and thus these metabolites can be considered of equivalent toxicity to the parent substance and potential candidates for inclusion in the Residue Definition from a toxicological perspective. If a risk assessment were to be required for 5-hydroxy- bixlozone and 5-hydroxy-bixlozone-glucuronide, the

³ EFSA (2012) Scientific Opinion on Evaluation of the Toxicological Relevance of Pesticide Metabolites for Dietary Risk Assessment, EFSA Journal 2012;10(07):2799

Evaluator	Month and year	Active Substance
HSE	July 2022	Bixlozone (F9600)

Section 2 Mammalian Toxicology

additional alcohol and carboxylic acid amide functional
groups are formed when the isoxazolidinone ring of
bixlozone is opened up. Although no additional <i>in silico</i>
alerts were flagged for this metabolite for genotoxicity or
general toxicity compared to bixlozone, the reliability of
QSAR predictions for complex general toxicity
endpoints is low. Its conjugate form, <u>bixlozone-3-OH-</u>
propanamide-sulfate is expected to have a comparable or
less severe toxicity. Its downstream metabolite
bixlozone-dimethyl-malonamide is structurally close to
bixlozone-3-OH-propanamide; both shared the same
comparative <i>in silico</i> findings. None of these metabolites is a major rat metabolite. However, having
excluded genotoxicity by QSAR analysis, if a risk
assessment were to be required for bixlozone-3-OH -
propanamide, bixlozone-3-OH-propanamide-sulfate
and bixlozone-dimethyl-malonamide, the Cramer
class III TTC chronic value of 1.5 µg/kg bw/day and
acute value of 5 μ g/kg bw could be used in a
conservative first-tier assessment. Given their close
structural similarity, a combined risk assessment of these
three metabolites against the TTC values should be
performed, if required.
The metabolite <u>2,4-dichlorobenzoic acid</u> (2,4-DBA) is a
putative major rat metabolite considered to be covered
via its downstream glycine conjugate 2,4-
dichlorohippuric acid, the latter being recovered in rat
urine at levels > 10 % of the AD in both sexes following
single low dose oral exposure. On this basis, its toxicity
profile could be considered 'covered' by the parent.
However, specific data are available on this metabolite.
These data take precedence on the kinetic prediction and
indicate that 2,4-dichlorobenzoic acid may be
approximately 2-fold more toxic than bixlozone. On this
basis, it is concluded that 2,4-dichlorobenzoic acid is
more toxic than the parent and a likely candidate for
inclusion in the Residue Definition from a toxicological
perspective. If a risk assessment were to be required, the
dietary acute and chronic reference values of
bixlozone should be used , adjusting the residue estimate
of 2,4-dichlorobenzoic acid for a relative potency factor
of 2. In addition, a modifying factor of 1.435 should also
be applied to account for the molecular weight
conversion between the parent and the metabolite. This
will allow to express 2,4-dichlorobenzoic acid into
parent bixlozone equivalents.
The two metabolites 2,2-dimethyl-3-hydroxy propionic
acid and dimethyl-malonic acid are not structurally
similar to bixlozone but are closely related to each other.
Both substances are not major rat metabolites. No
additional in silico alerts were flagged for these
metabolites for genotoxicity compared to bixlozone; they
both have classification notifications indicating a more

Evaluator	Month and year	Active Substance
HSE	July 2022	Bixlozone (F9600)

Section 2 Mammalian Toxicology

severe toxicity profile compared to bixlozone however these general toxicity hazards (local irritant effects on skin, eye and respiratory tract) are of no relevance to the dietary route of exposure. Having excluded genotoxicity by QSAR analysis, if a risk assessment were to be required for **2-dimethyl-3-hydroxy propionic acid and dimethyl-malonic acid, the Cramer class I TTC chronic value of 30 µg/kg bw/day** could be used in a conservative first-tier assessment. This TTC value can also be used for the acute exposure assessment for these metabolites (when performing an initial 'screen' versus the TTC (CCI)). Given their close structural similarity, a combined risk assessment of these two metabolites against the TTC values should be performed, if required.

Relevant impurities

Following the toxicological assessment of the relevance of impurities present in bixlozone technical, including theoretical impurities, the proposed reference specification contains only one toxicologically relevant impurity:

(2,4-dichlorophenyl)methanol (CAS 1777-82-8), specified at 0.15 % w/w (15 g/kg)

Medical data (Regulation (EU) N° 283/2013, Annex Part A, point 5.9)

Limited; new active substance.

No reports of diseases or adverse health effects attributed to exposure associated with the handling, testing or manufacture of bixlozone technical and formulations. No reports of clinical cases and poisoning.

Summary ⁴ (Regulation (EU) N°1107/2009, Annex II, point 3.1 and 3.6)	Value (mg/kg bw (per day))	Study	Uncertainty factor
Acceptable Daily Intake (ADI)	0.3	Rat (oral), 90-day	100
Acute Reference Dose (ARfD)	0.75	Rat (oral gavage), developmental toxicity study	100
Acceptable Operator Exposure Level (AOEL)	0.2	rat, 90-day	100 70 % oral bioavailab ility
Acute Acceptable Operator Exposure Level (AAOEL)	Not suitable data available		

⁴ If available include also reference values for metabolites

Evaluator	Month and year	Active Substance
HSE	July 2022	Bixlozone (F9600)

Section 2 Mammalian Toxicology

Dermal absorption (Regulation (EU) N° 284/2013, Annex Part A, point 7.3)

Representative formulation (F9600-4SC, SC	Concentrate (364 g/L): 0.4 %
formulation, bixlozone 364 g/L)	Spray dilution A (<i>3.36 g/L</i>): 6 %
	Spray dilution B (0.251 g/L): 24 %
	Based on an in vitro human study - representative
	formulation tested

Operators	'F9600-4SC'		
	Model: EFSA Calculator (version: 30 March 2015)		
	<u>Use</u> : Outdoor application to cereals via tra- boom sprayer, application rate 0.375 kg a.s		
	Exposure estimates (model):	% of AOEL	
	Without PPE:	7.5	
Workers	'F9600-4SC'		
	<u>Use</u> : Outdoor application to cereals, application rate 1 0.375 kg a.s./ha, exposure during inspection/irrigation		
	Model: EFSA Calculator (version: 30 Mar	ch 2015)	
		<u>% of AOEL</u>	
	No PPE (with workwear)	6	
Bystanders and residents	'F9600-4SC'		
	Use: Cereals, tractor mounted equipment, a rate 1 x 0.375 kg a.s./ha, 150 L water/ha	application	
	Model: EFSA Calculator (version: 30 Mar	ch 2015)	
	Child Resident (and bystander)*	% AOEL	
	Spray Drift	8	
	Vapour	1	
	Surface Deposits	1	
	Entry into Treated Crops	8 12	
	All pathways (mean)	12	
	Adult Resident (and bystander)*		
	Spray Drift	2	
	Vapour Surface Deposite	<1 <1	
	Surface Deposits<1Entry into Treated Crops4		
	All pathways (mean)	5	
	* Bixlozone does not have an assigned AAOEL.		
	Therefore, the exposure risk assessment fo	r residents	
	also covers bystander exposure.		

Exposure scenarios (Regulation (EU) N° 284/2013, Annex Part A, point 7.2)

Evaluator	Month and year	Active Substance
HSE	July 2022	Bixlozone (F9600)

Section 2 Mammalian Toxicology

Classification with regard to toxicological data (Regulation (EU) N° 283/2013, Annex Part A, Section 10)

Substance :	Bixlozone technical
Harmonised classification according to Regulation (EC) No 1272/2008 and its Adaptations to Technical Process [Table 3.1 of Annex VI of Regulation (EC) No 1272/2008 as amended] ⁵ :	No current harmonised classification.
Peer review proposal ⁶ for harmonised classification according to Regulation (EC) No 1272/2008:	Not classified

⁵ Regulation (EC) No 1272/2008 of the European Parliament and of the Council of 16 December 2008 on classification, labelling and packaging of substances and mixtures, amending and repealing Directives 67/548/EEC and 1999/45/EC, and amending Regulation (EC) No 1907/2006. OJ L 353, 31.12.2008, 1-1355.

⁶ It should be noted that harmonised classification and labelling is formally proposed and decided in accordance with Regulation (EC) No 1272/2008. Proposals for classification made in the context of the evaluation procedure under Regulation (EC) No 1107/2009 are not formal proposals.

E	valuator	Month and year	Active Substance	
Η	SE	July 2022	Bixlozone (F9600)	

Section 3 Residues

Residues in or on treated products food and feed

Metabolism in plants (Regulation (EU) N° 283/2013, Annex Part A, points 6.2.1, 6.5.1, 6.6.1 and 6.7.1)

Primary crops	Crop groups	Crop(s)	Applicati	ion(s)	DAT (days)
(Plant groups covered)	Fruit crops	-	-		-
OECD Guideline 501	Root crops	Sugar beet	C 1 x 293 g as/ P 1 x 298 g as/		28 (immature tops) 173 (mature tops and roots)
	Leafy crops	-	-		-
		Wheat	C 1 x 288 g as/ha P 1 x 307 g as/ha		28 (forage) 48 (hay) ca. 60 (grain and straw)
	Cereals/grass crops	Rice	Dry land rice C 1 x 348 g as/ P 1 x 348 g as/ Paddy rice C 1 x 350 g as/	ha	151-153 (grain and straw)
			P 1 x 344 g as/		
	Pulses/Oilseeds	Canola (oilseed rape)	C 1 x 276 g as/ P 1 x 287 g as/		36 (forage) 70-71 (seed and straw)
	Miscellaneous	-	-		-
	Studies conducted out Two labels (C=carbon metabolism pathways	yl labelled; P= p			
Rotational crops	Crop groups	Crop(s)	PBI (days)	Co	omments
(metabolic pattern) OECD Guideline 502	Root/tuber crops	Radish	30 (C/P), 120 (C/P), 310 (C/P)	1×269 -bare soil (281g a.s./ha to P)
	Leafy crops	Lettuce	63 (C/P), 153 (C/P), 310 (C/P)	$1 \times 278-2$ bare soil (288 g a.s./ha to C)
	Cereal (small grain)	Wheat	30 (C/P), 120 (C/P), 310 (C/P)	phenyl, C-	diolabels (P- - carbonyl). lettuce for the

	Month	n and year		Active Substance
HSE	July 2022			Bixlozone (F9600)
Section 3 Residues				
	Other	-	-	phenyl label was collected from a low rate (circa 100 g as/ha applied to bare soil) application as phytotoxicity was observed in the high rate (circa 300 g /ha applied t bare soil) lettuce 30 DAT plots
Rotational crop and primary crop metabolism similar?	data it is not expected th crops as a result of the in Parent bixlozone was th	is extensively tes were tested at residues of ntended uses.	metabolised in l in follow on fi metabolites wil	n rotational crops. Main ield trials – further to these Il be present in rotational
	the follow on rotational Parent was found in the wheat samples)	crop field trial	s.	adish and lettuce, but not
Processed commodities	Parent was found in the	crop field trial	s.	
(standard hydrolysis	Parent was found in the wheat samples)	crop field trial rotational crop	s. 9 metabolism (r	
(standard hydrolysis study)	Parent was found in the wheat samples) Conditions	crop field trial rotational crop Bixlozone	s. o metabolism (r 2,4-DBA	radish and lettuce, but not
Processed commodities (standard hydrolysis study) OECD Guideline 507	Parent was found in the wheat samples) Conditions 20 min, 90°C, pH 4	crop field trial rotational crop Bixlozone stable	s. p metabolism (r 2,4-DBA }	radish and lettuce, but not
(standard hydrolysis study)	Parent was found in the wheat samples)Conditions20 min, 90°C, pH 460 min, 100°C, pH 520 min, 120°C, pH 6Residues of bixlozone aLow residues of bixlozone aLow residues of bixlozone aLow residues of bixlozone (above the LOQ).In primary crops, there y(2,4-DBA) in cereals. A	crop field trial rotational crop Bixlozone stable stable stable re stable (teste one are found in dues of parent was a low infre	s. p metabolism (r 2,4-DBA } Not investi } d using P and C n some rotation bixlozone are n equent finding c udy for 2,4-dicl	radish and lettuce, but not gated C labelled bixlozone). al crops. For the current not expected to be found of 2,4-dichlorobenzoic acid hlorobenzoic acid (2,4-
(standard hydrolysis study) OECD Guideline 507 Residue pattern in processed commodities similar to residue pattern	Parent was found in the wheat samples)Conditions20 min, 90°C, pH 460 min, 100°C, pH 520 min, 120°C, pH 6Residues of bixlozone aLow residues of bixlozone aDBA), which is in the p	crop field trial rotational crop Bixlozone stable stable stable re stable (teste one are found in dues of parent was a low infre	s. p metabolism (r 2,4-DBA } Not investi } d using P and C n some rotation bixlozone are n equent finding c udy for 2,4-dicl	radish and lettuce, but not gated C labelled bixlozone). al crops. For the current not expected to be found of 2,4-dichlorobenzoic acid hlorobenzoic acid (2,4-

Evaluator	Mont	h and year	Active Substance
HSE	July 2022		Bixlozone (F9600)
Section 3 Residues			
Plant residue definition for risk a RA)	ssessment (RD-	rape, wheat, barley and RD-RA (plants): Sum 2,4-dichlorobenzoic ac Molecular weight conv dichlorobenzoic acid a [the 2 x factor is to acc potency compared to p dichlorobenzoic acid a molecular weight conv applied. This then give applied to the level of For other crops and u currently reached on updated TTC exposur hydroxy propionic acid acid (M132/1) will be uses). For the currently in	of residues of bixlozone and 2 x id expressed as bixlozone
Conversion factor (enforcement t	o risk assessment)	mostly <loq residues<br="">trials. [OECD 2016 Guidanc for the calculation of residue levels below t account.] (Furthermore there i</loq>	propose a conversion factor as s of each analyte were observed in e on Crop Field Trials states that, E CFs, residue trials resulting in he LOQ should not be taken into is the complexity of the higher BA compared to parent bixlozone ox)).

Metabolism in livestock (Regulation (EU) N° 283/2013, Annex Part A, points 6.2.2, 6.2.3, 6.2.4, 6.2.5 6.7.1)

OECD Guideline 503 and SANCO/11187/2013 rev. 3 (fish)	Animal	Dose (mg/kg bw/d)	Duration (days)	N rate/comment
Animals covered	Laying hen	P- 1.15 C- 1.08	13 13	Dietary burden is not significant for the proposed uses (study represents 540-575 N).

Evaluator	Month and year	Active Substance
HSE	July 2022	Bixlozone (F9600)

Section 3 Residues

	Goat	P- 0.41 C- 0.49	7 7	Dietary burden is not significant for the proposed uses (study represents 101-123 N).				
	Pig	No study available	e (or needed)	k				
	Fish	No study available	e (or needed cur	rently)				
	Goat and hen st – Carbonyl labe		s studied each speci	es (P- Phenyl labelled, and C				
		o not need to be currently 004 mg/kg bw/day.	relied upon as dieta	ary burden is not exceeding				
Time needed to reach a plateau concer	ntration in	Eggs (7-9 days)						
milk and eggs (days)		Milk (around 2 day	ys)					
Animal residue definition for enforcer Enf)	nimal residue definition for enforcement (RD- nf)			Bixlozone				
OECD Guidance, series on pesticide	DECD Guidance, series on pesticides No 31			This residue definition will need to be reconsidered if there are extensions of use.				
Animal residue definition for risk asse RA)	Animal residue definition for risk assessment (RD-RA)			Currently not needed for the early application proposed uses on oilseed rape, wheat, barley and maize, so a RD- RA is not currently proposed for products of animal origin.				
		become more pro	minent in anim op uses or furtl	be needed, if residues hal feed items for any her extensions of uses maize.				
Conversion factor (enforcement to rish	Currently not needed for the proposed uses on oilseed rape, wheat, barley and maize (a RD-RA is not currently proposed for products of animal origin therefore a conversion factor cannot be calculated). A further consideration would be needed, if residues become more prominent in animal feed items for any additional/new crop uses or further extension of uses on oilseed rape, wheat, barley and maize.							
Metabolism in rat and ruminant simila	Aetabolism in rat and ruminant similar (Yes/No)			one)				
Fat soluble residues (Yes/No) (FAO, 2009)	No (the main residues in livestock/rat are not parent bixlozone, but metabolites with lesser potential to be fat soluble), as supported by the findings in animal metabolism studies (levels of residues in fat in livestock and rat were not high).							

Evaluator	Month and year	Active Substance
HSE	July 2022	Bixlozone (F9600)

Section 3 Residues

Residues in succeeding crops (Regulation (EU) N° 283/2013, Annex Part A, point 6.6.2)

Confined rotational crop study (Quantitative aspect) OECD Guideline 502	TRRs in edible commodities (lettuce, radish roots and tops) were ≤ 0.21 mg/kg at a PBI of 30 d - 153 d and declined to max 0.017 mg/kg at a PBI of 310 d.
	TRRs in wheat grain up to 0.037 mg/kg (30 DAT) declined over time (up to 0.033mg/kg 120 DAT and up to 0.009mg/kg 310 DAT).
	TRRs in wheat feed items (wheat forage, hay and straw) up to 0.59 mg/kg (max in wheat hay) and declined markedly in 310 DAT timing.
	Parent bixlozone present at or below 0.054 mg/kg or 76% TRR. Metabolites >10% TRR and >0.01 mg/kg observed were: M190/1, M289/3, M132/1, M289/2, M289/4, and M261/1. Nearly all of these were tested in the follow on field trials (see below).
Field rotational crop study	Representatives of cereals, root/tuber and leafy
OECD Guideline 504	vegetables grown following treatment at 300 g a.s./ha. Residue levels of bixlozone metabolites : 2,4- dichlorobenzoic acid (M190/1), 5'-hydroxy-bixlozone (M289/3), bixlozone-dimethyl-malonamide (M289/2), bixlozone -hydroxy-isobutyramide (M261/1) and 4- hydroxymethyl-bixlozone (M289/4), in samples from the treated plots were <0.01 mg/kg at all plant back intervals.
	Residue levels of bixlozone were <0.01 mg/kg, with the exception of two low positive residues of bixlozone detected in the 229 day PBI samples for radish tops and immature lettuce leaves (0.013 and 0.011 mg/kg respectively).
	A label re-plant restriction has been proposed (leafy crops and above ground vegetables must not be planted until at least 10 months after application of bixlozone) with the aim of ensuring residues of bixlozone are below 0.01 mg/kg.

Evaluator	Month and year	Active Substance
HSE	July 2022	Bixlozone (F9600)

Section 3 Residues

Stability of residues (Regulation (EU) N° 283/2013, Annex Part A, point 6.1) OECD Guideline 506

			Stability (Months)							
Plant products (Category)	Commodity	Т (°С)	Bixloz one (A/B)	2,4- dichlor obenzoi c acid (A/B)	5- hydrox y- bixlozo ne (A)	2,2- dimeth yl-3- hydrox y propion ic acid (A)	5'- hydrox y- bixlozo ne (A/B)	Bixlozo ne- dimeth yl- malona mide (B)	Bixlozo ne-OH- isobuty ramide (B)	4- hydrox ymethy 1- bixlozo ne (B)
High acid content	Grapes	≤-18	24	24	18	24	24	-	-	-
High oil content	Oilseed rape seed	≤-18	24	24	18	24	24	-	-	-
High starch content	Potato tuber	≤-18	24	24	18	24	24	-	-	-
None specified	Wheat straw	≤-18	24	24	18	24	24	24	24	24
High starch content	Radish root	≤-18	-	-	-	-	-	24	24	24
High water content	Leaf lettuce	≤-18	-	-	-	-	-	24	24	24
High starch content	Wheat grain	≤-18	-	-	_	-	-	24	24	24

A= analytes included in primary crop field trials

B= analytes included in rotational crop field trials

All analytes were sufficiently stable for at least 24 months (18 months for 5-hydroxy-bixlozone) in the matrices tested.

Data on stability of residues in cereal grain are not available for the analytes relevant to the requested cereal primary crops (see Vol 1, section 2.7.1).

A i	Animal	Т	T Stability (Month/Year)						
Animal	commodity	(°C)							
	Muscle								
	Liver								
	Kidney								
	Milk								
	Egg								
							•		3
Not applicable; no data provided.									

Month and year	Active Substance
July 2022	Bixlozone (F9600)
h	Withiti and year

Section 3 Residues

Summary of residues data from the supervised residue trials (Regulation (EU) N° 283/2013, Annex Part A, point 6.3) OECD Guideline 509, OECD Guidance, series on pesticides No 66 and OECD MRL calculator

Сгор	Outdoor/ Indoor (a)	Residue levels (mg/kg) observed in the supervised residue trials relevant to the supported GAPs (b)	Recommendations/comments (OECD calculations)	MRL proposals (mg/kg)	HR (mg/kg) (c)	STMR (mg/kg) (d)
Representative	uses		·		•	•
Oilseed rape	Outdoor	Enf: 7 x <0.01 RA: 7 x <0.039 (human exposure assessment) [7 x <0.024 (livestock dietary intake assessment)]	The 2 x factor is to account for the relative toxicological potency compared to parent bixlozone. To express 2,4-dichlorobenzoic acid as bixlozone equivalence a molecular	0.01*	<0.039 (HR _{Enf} <0.01)	<0.039 (STMR _{Enf} <0.01)
Wheat and barley grain	Outdoor	Enf: 13 x <0.01 RA: 12 x <0.039, 0.039 (human exposure assessment) [12 x <0.024, 0.024 (livestock dietary intake assessment)]	 weight conversion of 1.435 also has to be applied. This then gives an overall factor of 2.87 to be applied to the level of 2,4-dichlorobenzoic acid. It should be noted that this 2 x factor is only required in 	0.01*	0.039 (HR _{Enf} <0.01)	<0.039 (STMR _{Enf} <0.01)
Wheat and barley straw	Outdoor	Enf: 13 x <0.01 RA: 12 x <0.024, 0.05 (livestock dietary intake assessment)	assessments comparing to the toxicological endpoints for bixlozone, i.e., this additional 2 x	Not currently set for animal feed items	0.05	<0.024
Maize grain	Outdoor	Enf: 4 x <0.01 RA: 4 x <0.039 (human exposure assessment) [4 x <0.024 (livestock dietary intake assessment)]	factor has not been used in the animal dietary burden estimate of exposure as this is an estimate of livestock dietary intakes, rather	0.01*	<0.039 (HR _{Enf} <0.01)	<0.039 (STMR _{Enf} <0.01)
Maize straw	Outdoor	Enf: 4 x <0.01 RA: 4 x <0.024 (livestock dietary intake assessment)	than comparison with a toxicological endpoint. Hence, results of <0.024 mg/kg have been taken forward into the animal dietary burden calculation (<0.01 mg/kg bixlozone + <0.01 mg/kg 2,4-dichlorobenzoic acid x 1.435 MW conversion).	Not currently set for animal feed items	<0.024	<0.024

Evaluator	Month and year	Active Substance
HSE	July 2022	Bixlozone (F9600)

Section 3 Residues

Сгор	Outdoor/ Indoor (a)	Residue levels (mg/kg) observed in the supervised residue trials relevant to the supported GAPs (b)	Recommendations/comments (OECD calculations)	MRL proposals (mg/kg)	HR (mg/kg) (c)	STMR (mg/kg) (d)
Summary of the data on formulation equivalence Representative uses are early in the growing season. For a full consideration of the trials performed with a 'CS' formulation, see Volume 1. No further consideration required.						
Summary of data on residues in pollen and bee products (Regulation (EU) No 283/2013, Annex Part A, point 6.10.1)						

Not required at the point of submission.

(a): Residues trials data relevant to the agricultural practices and climatic conditions in the UK, Indoor for glasshouse/protected crops.

(b): Residue levels in trials conducted according to GAP reported in ascending order (*e.g.* 3x <0.01, 0.01, 6x 0.02, 0.04, 0.08, 3x 0.10, 2x 0.15, 0.17). When residue definition for enforcement and risk assessment differs, use **Enf/RA** to differentiate data expressed according to the residue definition for **Enf**orcement and **R**isk Assessment.

(c): HR: Highest residue. When residue definition for enforcement and risk assessment differs, HR according to residue definition for enforcement reported in brackets (HREnf).

(d): STMR: Supervised Trials Median Residue. When residue definition for enforcement and risk assessment differs, STMR according to definition for enforcement reported in brackets (STMR_{Enf}).

Evaluator	Month and year	Active Substance
HSE	July 2022	Bixlozone (F9600)

Section 3 Residues

Inputs for animal burden calculations

	Med	ian dietary burden	Maxi	imum dietary burden
Feed commodity	(mg/kg)	(mg/kg) Comment (Comment
Representative uses Primary crop oilseed rape, maiz expressed as bixlozone. ^{\$} Rotat	e, wheat and onal crops (l	barley: Sum of bixlozone RC): bixlozone.	and 2,4-dich	nlorobenzoic acid,
Alfalfa forage, hay, meal, silage	0.01	STMR (RC)	0.028	HR (RC)
Barley forage, silage	0.01	STMR (RC)	0.028	HR (RC)
Barley straw	0.024	STMR	0.05	HR
Bean vines	0.01	STMR (RC)	0.028	HR (RC)
Beet, mangel fodder	0.01	STMR (RC)	0.028	HR (RC)
Beet, sugar	0.01	STMR (RC)	0.028	HR (RC)
Cabbage heads, leaves	0.01	STMR (RC)	0.028	HR (RC)
Clover forage, hay, silage	0.01	STMR (RC)	0.028	HR (RC)
Corn, field, forage/silage	0.01	STMR (RC)	0.028	HR (<i>RC</i>)
Corn, field (maize), pop, stover	0.024	STMR	0.024	HR
Cowpea, forage, hay	0.01	STMR (RC)	0.028	HR (RC)
Grass, forage (fresh), hay, silage	0.01	STMR (RC)	0.028	HR (RC)
Kale, leaves	0.01	STMR (RC)	0.028	HR (RC)
Lespedeza, forage, hay	0.01	STMR (RC)	0.028	HR (RC)
Millet, forage	0.01	STMR (RC)	0.028	HR (RC)
Oat forage, hay	0.01	STMR (RC)	0.028	HR (RC)
Pea vines, hay, silage	0.01	STMR (RC)	0.028	HR (RC)
Rape forage	0.01	STMR (RC)	0.028	HR (RC)
Rye forage	0.01	STMR (RC)	0.028	HR (RC)
Sorghum forage, silage	0.01	STMR (RC)	0.028	HR (RC)
Soybean forage, hay, silage	0.01	STMR (RC)	0.028	HR (RC)
Trefoil forage	0.01	STMR (RC)	0.028	HR (RC)
Triticale forage, hay	0.01	STMR (RC)	0.028	HR (RC)
Turnip tops, leaves	0.01	STMR (RC)	0.028	HR (RC)
Vetch forage, hay	0.01	STMR (RC)	0.028	HR (RC)
Wheat forage, hay	0.01	STMR (RC)	0.028	HR (RC)
Wheat straw	0.024	STMR	0.05	HR
Barley grain	0.024	STMR	-	-
Corn, field (maize), pop, grain	0.024	STMR	-	-

Evaluator	Month and year	Active Substance
HSE	July 2022	Bixlozone (F9600)

Section 3 Residues

Food commodity	Med	ian dietary burden	Maximum dietary burden		
Feed commodity	(mg/kg)	(mg/kg) Comment		Comment	
Wheat grain	0.024	STMR	-	-	
Brewer's grain (dried)	0.024	STMR (barley grain) x PF [†]	-	-	
Canola (rape seed) meal	0.024	STMR (rape meal) x PF [†]	-	-	
Corn, field, milled by- products, hominy meal, gluten feed, gluten meal	0.024	STMR (maize grain) x PF [†]	-	-	
Distiller's grain (dried)	0.024	STMR (wheat grain) x PF [†]	-	-	
Rape meal	0.024	STMR (rape seed) x PF [†]	-	-	
Wheat gluten (meal)	0.024	STMR (wheat grain) x PF [†]	-	-	
Wheat (milled by-products)	0.024	STMR (wheat grain) x PF^{\dagger}	-	-	

 \dagger PF = 1; As residues in the RAC are < LOQ, concentration in the processed fraction is unlikely and the default processing factor (Pf) has not been applied. It is noted that the processing factors derived as part of the evaluation are uncertain and tentative only and do not show a marked (not above x 1.5) concentration for oilseed rape fractions.

[Considering cereals for completeness, there is an indication of concentration in wheat bran and barley malt sprouts but these are not animal feed items].

^{\$} The 2 x factor is to account for the relative toxicological potency compared to parent bixlozone. To express 2,4-dichlorobenzoic acid as bixlozone equivalence a molecular weight conversion of 1.435 also has to be applied. This then gives an overall factor of 2.87 to be applied to the level of 2,4-dichlorobenzoic acid.

It should be noted that this 2 x factor is only required in assessments comparing to the toxicological endpoints for bixlozone, i.e., this additional 2 x factor has not been used in the animal dietary burden estimate of exposure as this is an estimate of livestock dietary intakes, rather than comparison with a toxicological endpoint.

Evaluator	Month and year	Active Substance
HSE	July 2022	Bixlozone (F9600)

Section 3 Residues

Residues from livestock feeding studies (Regulation (EU) N° 283/2013, Annex Part A, points 6.4.1, 6.4.2, 6.4.3 and 6.4.4) OECD Guideline 505 and OECD Guidance, series on pesticides No 73

MRL calculations		Ru	minant		Pig/	Swine	Ροι	ıltry	Fis	sh
Highest expected intake	Beef cattle	0.003	Ram/Ewe	0.004	Breeding	0.001	Broiler	0.002	Carp	-
(mg/kg bw/d)	Dairy cattle	0.003	Lamb	0.004	Finishing	0.001	Layer	0.002	Trout	-
(mg/kg DM for fish)							Turkey	0.002	Fish intake >0	.1 mg/kg DM
Intake >0.004 mg/kg bw	1	No	1	No	1	No	N	lo	N/	A
Feeding study submitted	1	No	I	No]	No	Ν	lo	N	0
		-				8		-		
Representative feeding	Level	Beef: N	Level	Lamb: N	Level	N rate	Level	B or T: N	Level	N rate
level (mg/kg bw/d,		Dairy: N		Ewe: N		Breed/Finish		Layer: N		Carp/Trout
mg/kg DM for fish) and N rates	Estimated HR ^(a) at 1N	MRL	Estimated HR ^(a) at 1N	MRL	Estimated HR ^(a) at 1N	MRL	Estimated HR ^(a) at 1N	MRL	Estimated HR ^(a) at 1N	MRL
Muscle		proposals		proposals		proposals		proposals		proposals
Fat										
Meat ^(b)										
Liver										
Kidney										
Milk ^(a)										
Eggs										
Method of calculation ^(c)										

^(a): Estimated HR calculated at 1N level (estimated mean level for milk).

^(b): HR in meat calculated for mammalian on the basis of 20% fat + 80% muscle and 10% fat + 90% muscle for poultry

(c): The OECD guidance document on residues in livestock (series on pesticides 73) recommends three different approaches to derive MRLs for animal products; by applying a transfer factor (Tf), by intrapolation (It) or by linear regression (Ln). Fill in method(s) considered to derive the MRL proposals.

Evaluator	Month and year	Active Substance
HSE	July 2022	Bixlozone (F9600)

Section 3 Residues

Conversion Factors (CF) for enforcement to risk assessment

Animal products

N/A – significant residues not expected in animal products as a result of the proposed uses.

Plant products

Mean Conversion Factors (CF) calculated at the different PHIs in the supervised residues trials^(a)

No conversion factor (enforcement to risk assessment) has been set as virtually all of the trials (oilseed rape and cereals) contained residues of parent and 2,4-dichlorobenzoic acid at a level of <LOQ of <0.01 mg/kg [OECD 2016 Guidance on Crop Field Trials states that, for the calculation of CFs, residue trials resulting in residue levels below the LOQ should not be taken into account.]

^(a): CF calculated at the supported PHI are underlined.

^(b): 0-/0+ for samples collected just before/after the last application

Evaluator	Month and year	Active Substance
HSE	July 2022	Bixlozone (F9600)

Section 3 Residues

Processing factors (Regulation (EU) N° 283/2013, Annex Part A, points 6.5.2 and 6.5.3) OECD Guideline 508 and OECD Guidance, series on testing and assessment No 96

Crop (RAC)/Edible part or	Number	Processing Facto		Conversion
Crop (RAC)/Processed product	of studies ^(a)	Individual values	Median PF	Factor (CF _P) for RA ^(b)
Wheat Based on a RD-RA (sum of bixlozone and 2 x 2,4-dichlorobenzoic acid, expressed as bixlozone) in each trial (2 studies), at least one of the analytes was <loq <u="" grain,="" in="">making estimation of all processing factors, including those for bran below, uncertain (UC).</loq>				Not proposed as a number of analytes having <0.01 mg/kg residues. (<u>all the PF are</u> <u>uncertain</u>)
Processing factors are listed for bran where a concentration can be seen.				
Fine bran Coarse bran Total bran Total bran	1 1 2 1	0.17 (UC) RD-RA 1.58 (UC) RD-RA 1.13, 0.93 (UC) RD-RA 0.82 RD-enf (bixlozone)	0.21 (UC) 1.58 (UC) 1.03 (UC) 0.82 (n=1)	
All other processing factors are not listed in the LoEP as there was not a concentration in residues (see Vol 1 for further information) and estimation of all PFs is uncertain.				
Barley				
One study was provided. Based on a RD-RA (sum of bixlozone and 2 x 2,4- dichlorobenzoic acid, expressed as bixlozone), at least one of the analytes was <loq <u="" grain,="" in="">making estimation of all processing factors, including <u>those for malt sprouts below, uncertain</u> (UC).</loq>				Not proposed as a number of analytes having <0.01 mg/kg residues. (<u>all the PF are</u> <u>uncertain</u>)
Processing factors are listed for malt sprouts where a concentration can be seen.				
Malt sprouts All other processing factors are not listed in the LoEP as there was not a	1	1.49 (UC) RD-RA RD-enf (bixlozone)- cannot be derived	1.49 (UC)	

Evaluator	Month and year	Active Substance
HSE	July 2022	Bixlozone (F9600)

Section 3 Residues

Processing factors (Regulation (EU) N° 283/2013, Annex Part A, points 6.5.2 and 6.5.3)

OECD Guideline 508 and OECD Guidance, series on	testing and assessment No 96
---	------------------------------

Crop (RAC)/Edible part or	Number	Processing Facto	r (PF)	Conversion	
Crop (RAC)/Processed product	of studies ^(a)	Individual values	Median PF	Factor (CF _P) for RA ^(b)	
concentration in residues (see Vol 1 for further information) and estimation of all PFs is uncertain.					
Oilseed rape					
Based on the RD-RA (sum of bixlozone and 2 x 2,4-dichlorobenzoic acid, expressed as bixlozone), in each trial (2 studies), at least one of the analytes was <loq in="" raw="" seed,<br="" the=""><u>making estimation of all processing</u> <u>factors, including those for oil below,</u> <u>uncertain (UC).</u></loq>				Not proposed as a number of analytes having <0.01 mg/kg residues. (<u>all the PF are uncertain</u>)	
Processing factors are listed for oil and press cake where a concentration can be seen.					
Crude oil	1	1.28 (UC) RD-RA 1.63 RD-enf (bixlozone)	1.28 (UC) 1.63 (n=1)		
Press cake	1 1	1.42 (UC) RD-RA 1.41 RD-enf (bixlozone)	1.42 (UC) 1.41 (n=1)		
Refined oil	1	1.19 (UC) RD-RA	1.19 (UC)		
All other processing factors are not listed in the LoEP as there was not a concentration in residues (see Vol 1 for further information) and estimation of all PFs is uncertain.	1	1.44 RD-enf (bixlozone)	1.44 (n=1)		
Maize- one study provided but residues were all < LOQ in the grain RAC					
MRL application				1	
It is noted that processing factors are not proposed use on OSR the proposed MRL		e MRL proposals for the ac	ctive substance	e (for the	

proposed use on OSR the proposed MRL is 0.01*)
^(a): Studies with residues in the RAC at or close to the LOQ should be disregarded (unless concentration)
^(b): When the residue definition for risk assessment differs from the residue definition for enforcement

Evaluator	Month and year	Active Substance
HSE	July 2022	Bixlozone (F9600)

Section 3 Residues

Consumer risk assessment (Regulation (EU) N° 283/2013, Annex Part A, point 6.9) Consumer risk assessment limited to the representative uses

0.3 mg/kg bw per day- \$
Highest TMDI: <1 % ADI (UK, toddler)
Highest TMDI: 0.2 % ADI (GEMS Food G06)
Highest NEDI: <1 % ADI (UK, 4-6 year olds)
Highest IEDI: 0.2 % ADI (NL, toddler)
None- \$
0.75 mg/kg bw- \$
Highest NESTI: 0.3 % ARfD (Melon, UK, 4-6 year old)
Highest IESTI: 0.6 % ARfD (Melon, BE, toddler)
None- \$

\$- It is noted that the RD-RA includes the metabolite 2,4-dichlorobenzoic acid. This metabolite is currently proposed as twice as toxic as parent, and this is accounted for in the expression of the RD-RA: Sum of residues of bixlozone and 2 x 2,4-dichlorobenzoic acid expressed as bixlozone

[The 2 x factor is to account for the relative toxicological potency compared to parent bixlozone. To express 2,4-dichlorobenzoic acid as bixlozone equivalence a molecular weight conversion of 1.435 also has to be applied. This then gives an overall factor of 2.87 to be applied to the level of 2,4-dichlorobenzoic acid.]. The residue levels, expressed in this way, are then compared to the ADI and ARfD for parent bixlozone.

Additional contribution to the consumer intakes through drinking water resulting from groundwater metabolite(s) expected to be present above $0.75\,\mu\text{g/L}$

Metabolite(s)	^{\$} 2,4-dichlorobenzoic acid (after step 5 ((consumer risk assessment) it is concluc dichlorobenzoic acid is not a relevant m groundwater).	led that2,4-
ADI (mg/kg bw per day)	0.3 mg/kg bw/day (bixlozone ^{\$})	
Intake of groundwater metabolites (% ADI)	Adult WHO (60 kg bw, 2 L):	0.1 % ADI
WHO Guideline (WHO, 2009)	Child WHO (10 kg bw, 1 L):	0.4 % ADI
	Infant WHO (5 kg bw, 0.75 L):	0.6 % ADI
	Infant EFSA(2018) and UK approach (2	
	formula based on 33 g/kg bw powder ar	nd 227 ml water/kg
	bw/day):	0.9 % ADI

[§] Residues of 2,4-dichlorobenzoic acid doubled to account for this substance being twice as toxic as parent bixlozone. By doubling the residue levels for this metabolite, a risk assessment can be performed using the toxicological endpoints for parent bixlozone. (2,4-dichlorobenzoic acid residue 4.048 μ g/L x 1.435 MW conversion x 2 to account for relative toxicological potency compared to parent bixlozone = 11.62 μ g/L). It should be noted that although this value is >10 μ g/L, this is due to the exposure being doubled to account for higher toxicity and enabling comparison to the parent toxicological end point. Additionally, this is due to the application

Evaluator	Month and year	Active Substance
HSE	July 2022	Bixlozone (F9600)

Section 3 Residues

of a MW conversion factor. The actual level of 2,4-dichlorobenzoic acid expected in ground water is 4.048 $\mu g/L$ which is below the limit of 10 $\mu g/L$ outlined in SANCO/221/2000 –rev.10.

Proposed MRLs (Regulation (EU) No 283/2013, Annex Part A, points 6.7.2 and 6.7.3)

Code ^(a)	Commodity/Group	MRL/Import tolerance ^(b) (mg/kg) and Comments	
Plant comm	Plant commodities		
Representa	tive uses		
401060	Oilseed rape seed	0.01*	
500010	Barley	0.01*	
500030	Maize/corn	0.01*	
500090	Wheat	0.01*	
Animal cor	nmodities		
1040000	Honey	0.05*	

(a): Commodity code number, as listed in Annex I of Regulation (EC) No 396/2005

(b): MRLs proposed at the LOQ, should be annotated by an asterisk (*) after the figure.

Evaluator	Month and year	Active substance
HSE	July 2022	Bixlozone (F9600)

Section 4 Environmental fate and behaviour

Environmental fate and behaviour

Route of degradation (aerobic) in soil (Regulation (EU) N° 283/2013, Annex Part A, point 7.1.1.1)

Mineralisation after 100 days	$\begin{array}{c} 11.64-54.36 \ \% \ after \ 120 \ d, \ [^{14}C\mbox{-}carbonyl]\mbox{-}label \ (n^7\mbox{=}\ 7) \\ 10.40-47.41 \ \% \ after \ 120 \ d, \ [^{14}C\mbox{-}phenyl]\mbox{-}label \ (n\mbox{=}\ 7) \end{array}$
Non-extractable residues after 100 days	3.30 – 11.64 % after 120 d, [¹⁴ C-carbonyl]-label (n= 7) 3.78 – 18.18 % after 120 d, [¹⁴ C-phenyl]-label (n= 7)
Metabolites requiring further consideration - name and/or code, % of applied (range and maximum)	No major metabolites detected in laboratory studies. One major metabolite, 2,4-dichlorobenzoic acid (2,4- DBA), detected in soil dissipation studies. Max formation 69.4% (soil GE02 mass basis, 99.53% molar basis).

Route of degradation (anaerobic) in soil (Regulation (EU) N° 283/2013, Annex Part A, point 7.1.1.2)

5	2.83 – 20.53 % after 122 d, [¹⁴ C-carbonyl]-label (n= 4) 2.89 – 10.87 % after 122 d, [¹⁴ C-phenyl]-label (n= 4)
5	2.83 – 7.86 % after 122 d, [¹⁴ C-carbonyl]-label (n= 4) 2.58 – 9.24 % after 122 d, [¹⁴ C-phenyl]-label (n= 4)
for risk assessment - name and/or code, % of applied (range and maximum) 2, d Ju O! pe in 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,	 a-OH-propanamide (3-OH) – max 14.76 % at 122 d (n = b) c,4-dichlorobenzoic acid (2,4-DBA) – max 5.8 % at 122 l (n= 4) ustification was provided and accepted for excluding 3-OH from the exposure calculations due to the prolonged period of anaerobic conditions required for 3-OH to form a significant levels. c,4-DBA was detected at greater quantities in the soil lissipation studies and so the anaerobic results are not

Route of degradation (photolysis) on soil (Regulation (EU) N° 283/2013, Annex Part A, point 7.1.1.3)

Metabolites that may require further consideration for risk assessment - name and/or code, % of applied (range and maximum)	No major metabolites
Mineralisation at study end	2.46 - 3.26 % after 15 d (continuous irradiation), [¹⁴ C-carbonyl]-label (n= 2) 1.09 - 1.17 % after 15 d (continuous irradiation), [¹⁴ C-phenyl]-label (n= 2)
Non-extractable residues at study end	3.38 - 7.41 % after 15 d (continuous irradiation), [¹⁴ C-

⁷ n corresponds to the number of soils.

Evaluator	Month and year	Active substance		
HSE	July 2022	Bixlozone (F9600)		

Section 4 Environmental fate and behaviour

carbonyl]-label (n= 2)
5.10 - 7.22 % after 15 d (continuous irradiation), [¹⁴ C-
phenyl]-label (n=2)

Rate of degradation in soil (aerobic) laboratory studies active substance (Regulation (EU) N° 283/2013, Annex Part A, point 7.1.2.1.1 and Regulation (EU) N° 284/2013, Annex Part A, point 9.1.1.1)

Modelling endpoints								
Parent		Γ	Dark aerobic con	ditions				
Soil type pH ^{a)}		t. °C / % MWHC	DT ₅₀ /DT ₉₀ (d)	DT ₅₀ (d) 20 °C pF2/10kPa ^{b)}	St. (χ ²)	Method of calculation		
Clay	2		131 / 433	117.4	1.1	SFO		
Sandy loam			115 / 384	103.8	1.6	SFO		
Loamy sand	5.4	20 / 11.5	330 / >1000	330	1.0	SFO		
Silt loam	6.1	20 / 27.8	225 / 749	184.3	2.6	SFO		
Loamy sand	6.9	20 / 11.5	154 / 512	138.3	1.0	SFO		
Silt loam	6.8	20/31.8	64.1 / 213	52.5	1.2	SFO		
Clay	Clay 8.0		176 / 584	140.7	1.1	SFO		
Geometric n	nean (if not pH	dependent)		134				
	pH depe	endence			No			

^{a)} Measured in calcium chloride solution

^{b)} Normalised using a Q10 of 2.58 and Walker equation coefficient of 0.7

Triggering/persistence endpoints									
Parent		Dark aerobic conditions							
Soil type	pH ^{a)}	t. °C / % MWHC	DT ₅₀ (d)	DT ₉₀ (d)	St. (χ ²)	Method of calculation			
Clay	6.9	20 / 26.5	136	869	0.8	FOMC			
Sandy loam	7.2	20 / 18.0	115	384	1.0	SFO			
Loamy sand	5.4	20 / 11.5	1000	>1000	0.6	FOMC			
Silt loam	Silt loam 6.1		358	>1000	1.0	DFOP			
Loamy sand	6.9	20 / 11.5	154	512	1.0	SFO			
Silt loam	6.8	6.8 20 / 31.8		213	1.2	SFO			
Clay	8.0	20 / 29.7	176	584	1.1	SFO			

^{a)} Measured in calcium chloride solution

Evaluator	Month and year	Active substance		
HSE	July 2022	Bixlozone (F9600)		

Section 4 Environmental fate and behaviour

Rate of degradation in soil (aerobic) laboratory studies transformation products (Regulation (EU) N° 283/2013, Annex Part A, point 7.1.2.1.2 and Regulation (EU) N° 284/2013, Annex Part A, point 9.1.1.1)

Modelling endpoints								
3-OH-propanamide		Ι	Dark aerobic cor	onditions				
Soil type pH ^{a)}		t. °C / % MWHC	DT ₅₀ /DT ₉₀ (hours)	20 °C		Method of calculation		
Loamy sand	id 4.84 20 / 15.8		12.0 / 39.7	12.0	3.64	SFO		
Loam	Loam7.41Silty clay7.53		9.3 / 30.9	9.2	5.73	SFO		
Silty clay			10.0 / 33.1	6.8	5.89	SFO		
Geometric n	nean (if not pH	dependent)		9.1				
		No						

^{a)} Measured in [medium to be stated, usually calcium chloride solution or water]
 ^{b)} Normalised using a Q10 of 2.58 and Walker equation coefficient of 0.7

Triggering/persistence endpoints									
3-OH-propanamide	amide Dark aerobic conditions								
Soil type	pH ^{a)}	t. °C / % MWHC	. °C / % MWHC DT ₅₀ (hours)		St. (χ ²)	Method of calculation			
Loamy sand	Loamy sand 4.84		12.0	39.7	3.64	SFO			
Loam 7.41		20 / 24.6	9.3	30.9	5.73	SFO			
Silty clay	7.53	20 / 23.2	9.96	33.1	5.89	SFO			

^{a)} Measured in calcium chloride solution

Modelling endpoints									
2,4-DBA		Dark aerobic conditions							
Soil type	pe pH^{a} t. °C / % MW		DT ₅₀ /DT ₉₀ (d)	DT ₅₀ (d) 20 °C pF2/10kPa ^{b)}	St. (χ ²)	Method of calculation			
Loamy sand	4.84	20 / 15.8	8.9 / 29.7	8.9	9.11	SFO			
Loam	Loam 7.41 20 / 24.6 Silty clay 7.53 20 / 23.2		3.5 / 11.6	3.5	7.72	SFO			
Silty clay			7.6 / 25.4	7.6	8.54	SFO			
Geometric n		5.4							
	pH dep	endence		No					

^{a)} Measured in calcium chloride solution

^{b)} Normalised using a Q10 of 2.58 and Walker equation coefficient of 0.7

Triggering/persistence endpoints								
2,4-DBA	Dark aerobic conditions							
Soil type	pH ^{a)}	t. °C / % MWHC	DT ₅₀ (d)	DT ₉₀ (d)	St. (χ ²)	Method of calculation		
Loamy sand	4.84	20 / 15.8	7.5	38.8	6.79	HS		
Loam	7.41	20 / 24.6	3.5	11.6	7.72	SFO		

Evaluator N	Month and year	Active substance		
HSE J	July 2022	Bixlozone (F9600)		

Section 4 Environmental fate and behaviour

Silty clay	clay 7.53 20 / 23.2		6.5	33.6	6.01	HS			
^{a)} Measured in calcium chloride solution									

Rate of degradation field soil dissipation studies (Regulation (EU) N° 283/2013, Annex Part A, point 7.1.2.2.1 and Regulation (EU) N° 284/2013, Annex Part A, point 9.1.1.2.1)

Modelling endpoints								
Bixlozone				Aero	bic conditions			
Soil type (indicate if bare or cropped soil was used).	Location (trial code).	Form- ulation	pH ^{a)}	Depth (cm)	DT ₅₀ (d) Norm ^{b)} .	$DT_{90}(d)$ Norm ^{b)} .	St. (χ ²)	Method of calculation
Sandy loam (bare)	France (FR01)	SC	5.9	0-30	43.5	145	9.12	SFO
Sandy loam (incorp)	France (FR01)	SC	5.9	0-30	53.9	179	19.2	SFO
Sandy loam (bare)	France (FR01)	CS	5.9	0-30	59.1	196	6.24	SFO
Sandy loam (incorp)	France (FR01)	CS	5.9	0-30	152	504	15.8	SFO
Loam (bare)	Italy (IT01)	SC	6.7	0-30	57.8	192	9.72	SFO
Loam (incorp)	Italy (IT01)	SC	6.7	0-30	187	619	24.8	SFO
Loam (bare)	Italy (IT01)	CS	6.7	0-30	98	326	23.5	SFO
Loam (incorp)	Italy (IT01)	CS	6.7	0-30	195	646	17.6	SFO
Loam (incorp)	Italy (IT02)	SC	6.7	0-30	9.38	31.2	19.3	SFO
Loamy sand (bare)	Germany (GE01)	SC	5.9	0-30	49.3	164	9.0	SFO
Loamy sand (incorp)	Germany (GE01)	SC	5.9	0-30	68.9	229	15.5	SFO
Loamy sand (bare)	Germany (GE01)	CS	5.9	0-30	50.5	168	8.78	SFO
Loamy sand (incorp)	Germany (GE01)	CS	5.9	0-30	105	350	17.8	SFO
Sandy loam (bare)	France (FR02)	SC	5.1	0-30	23.1	76.7	2.73	SFO
Sandy loam (incorp)	France (FR02)	SC	5.1	0-30	47.9	159	6.45	SFO
Sandy loam (bare)	France (FR02)	CS	5.1	0-30	33.0	110	12.4	SFO
Sandy loam (incorp)	France (FR02)	CS	5.1	0-30	106	351	10.6	SFO
Loamy sand (incorp)	Germany (GE02)	SC	5.2	0-30	103	343	20.6	SFO
Loamy sand (bare)	Germany (GE02)	SC	5.2	0-30	72.6	241	18.9	SFO
Loam (incorp)	UK (UK01)	SC	7.1	0-30	78.8	262	9.4	SFO
Loam (bare)	UK (UK01)	SC	7.1	0-30	69.2	230	12.2	SFO
Geometric mean (if ne	ot pH dependent)				48.0 ^{e)}			
pH dependence					No			

^{a)} Measured in water

^{b)} Normalised using a Q10 of 2.58 and Walker equation coefficient of 0.7, values are DegT50matrix

c) Geometric mean relates to <u>SC formulation</u> values only (with geometric mean calculations undertaken on the <u>SC DT₅₀</u> values for each trial site prior to determining the overall geometric mean) – see 'combined lab and field' section below for further information

Evaluator	Month and year	Active substance	
HSE	July 2022	Bixlozone (F9600)	

Trigger	Triggering/PECsoil endpoints – DT ₅₀ highlighted in bold used in PEC _{soil} calculations								
Bixlozone		Aerobic conditions							
Soil type (indicate if bare or cropped soil was used).	Location (trial code).	Formulation	рН	Depth (cm)	DT ₅₀ (d) actual	DT ₉₀ (d) actual	St. (χ ²)	Method of calculation	
Sandy loam (bare)	France (FR01)	SC	5.9	0-30	19.6	108	9.13	DFOP	
Sandy loam (incorp)	France (FR01)	SC	5.9	0-30	53.2	177	20.1	SFO	
Sandy loam (bare)	France (FR01)	CS	5.9	0-30	0.20	108	8.04	DFOP	
Sandy loam (incorp)	France (FR01)	CS	5.9	0-30	216	719	17.3	SFO	
Loam (bare)	Italy (IT01)	SC	6.7	0-30	28.5	94.6	13.9	SFO	
Loam (incorp)	Italy (IT01)	SC	6.7	0-30	247	819	20.7	SFO	
Loam (bare)	Italy (IT01)	CS	6.7	0-30	7.36	219	19.7	DFOP	
Loam (incorp)	Italy (IT01)	CS	6.7	0-30	292	971	19.7	SFO	
Loam (incorp)	Italy (IT02)	SC	6.7	0-30	6.90	157	8.30	SFO	
Loamy sand (bare)	Germany (GE01)	SC	5.9	0-30	181	601	16.5	SFO	
Loamy sand (incorp)	Germany (GE01)	SC	5.9	0-30	193	642	17.2	SFO	
Loamy sand (bare)	Germany (GE01)	CS	5.9	0-30	194	643	16.3	SFO	
Loamy sand (incorp)	Germany (GE01)	CS	5.9	0-30	300	997	19.5	SFO	
Sandy loam (bare)	France (FR02)	SC	5.1	0-30	57.8	192	6.69	SFO	
Sandy loam (incorp)	France (FR02)	SC	5.1	0-30	106	352	7.12	SFO	
Sandy loam (bare)	France (FR02)	CS	5.1	0-30	74.7	248	13.3	SFO	
Sandy loam (incorp)	France (FR02)	CS	5.1	0-30	213	708	10.9	SFO	
Loamy sand (incorp)	Germany (GE02)	SC	5.2	0-30	22.6	>1000	13.3	DFOP	
Loamy sand (bare)	Germany (GE02)	SC	5.2	0-30	24.7	571	7.69	DFOP	
Loam (incorp)	UK (UK01)	SC	7.1	0-30	105	873	6.74	DFOP	
Loam (bare)	UK (UK01)	SC	7.1	0-30	51.8	333	11.8	SFO	

Triggering/PECsoil endpoints									
2,4-DBA		Aerobic conditions							
Soil type (indicate if bare or cropped soil was used).	Formulation pH Depth Story				St. (χ ²)	Method of calculation			
Sandy loam (bare)	France (FR01)	SC	5.9	0-30	2.77	9.22	35.5	SFO	
Sandy loam (bare)	France (FR01)	CS	5.9	0-30	6.40	21.3	27.1	SFO	
Loam (bare)	Italy (IT01)	SC	6.7	0-30	4.98	16.5	37.0	SFO	
Loam (bare)	Italy (IT01)	CS	6.7	0-30	15.7	52.1	13.7	SFO	

Evaluator	Month and year	Active substance	
HSE	July 2022	Bixlozone (F9600)	

	Persistence (for PBT assessment) endpoints							
Bixlozone	Aerobic conditions							
Soil type (indicate if bare or cropped soil was used).	Location (trial code).	Formulation	рН	Depth (cm)	DT ₅₀ (d) actual	DT ₉₀ (d) actual	St. (χ ²)	Method of calculation
Sandy loam (bare)	France (FR01)	SC	5.9	0-30	41.9	139	11.5	SFO
Sandy loam (incorp)	France (FR01)	SC	5.9	0-30	53.2	177	20.1	SFO
Sandy loam (bare)	France (FR01)	CS	5.9	0-30	59.4	197	11.7	SFO
Sandy loam (incorp)	France (FR01)	CS	5.9	0-30	216	719	17.3	SFO
Loam (bare)	Italy (IT01)	SC	6.7	0-30	70.9	236	12.5	SFO
Loam (incorp)	Italy (IT01)	SC	6.7	0-30	247	819	20.7	SFO
Loam (bare)	Italy (IT01)	CS	6.7	0-30	135	447	19.3	SFO
Loam (incorp)	Italy (IT01)	CS	6.7	0-30	292	971	19.7	SFO
Loam (incorp)	Italy (IT02)	SC	6.7	0-30	6.90	157	8.30	SFO
Loamy sand (bare)	Germany (GE01)	SC	5.9	0-30	144	477	9.39	SFO
Loamy sand (incorp)	Germany (GE01)	SC	5.9	0-30	193	642	17.2	SFO
Loamy sand (bare)	Germany (GE01)	CS	5.9	0-30	151	500	9.28	SFO
Loamy sand (incorp)	Germany (GE01)	CS	5.9	0-30	300	997	19.5	SFO
Sandy loam (bare)	France (FR02)	SC	5.1	0-30	58.9	196	4.80	SFO
Sandy loam (incorp)	France (FR02)	SC	5.1	0-30	106	352	7.12	SFO
Sandy loam (bare)	France (FR02)	CS	5.1	0-30	82.1	273	10.1	SFO
Sandy loam (incorp)	France (FR02)	CS	5.1	0-30	213	708	10.9	SFO
Loamy sand (incorp)	Germany (GE02)	SC	5.2	0-30	22.6	>1000	13.3	DFOP
Loamy sand (bare)	Germany (GE02)	SC	5.2	0-30	7.03	318	7.37	DFOP
Loam (incorp)	UK (UK01)	SC	7.1	0-30	105	873	6.74	DFOP
Loam (bare)	UK (UK01)	SC	7.1	0-30	146	486	10.5	SFO

Evaluator	Month and year	Active substance
HSE	July 2022	Bixlozone (F9600)

Section 4 Environmental fate and behaviour

Combined laboratory and field kinetic endpoints for modelling (when not from different populations)

populations	
Rate of degradation in soil active substance, normalised geometric mean (if not pH dependent)	Statistical analysis concluded the CS formulation incorporated soil dissipation studies resulted in significantly longer DT_{50} values than the SC formulation for them not to be classed as from the same population. As such, only the SC formulation soil dissipation endpoints were considered further for combination with the laboratory endpoints. The analysis of the SC formulation endpoints confirmed the hypothesis that they showed statistically shorter DT_{50} than the laboratory studies. Therefore, the geomean value of the SC formulation field trials (each field trial results averaged prior to calculating overall geomean) of 48.0 days is appropriate for consideration in the exposure calculations performed for the representative SC product.
	If a CS formulation use is sought, the Vol. 3CA should be consulted for further information on the derivation of an appropriate DT_{50} value.
Rate of degradation in soil transformation products, normalised geometric mean (if not pH dependent)	2,4-DBA: Geomean DT_{50} from laboratory aerobic degradation study appropriate for PEC_{GW} calculations – 5.4 d
Kinetic formation fraction (f. f. k_f / k_{dp}) of transformation products, arithmetic mean	2,4-DBA: Detected in soil dissipation studies at a maximum occurrence of 69.4% on a mass basis, equivalent to 99.53% on a molar basis. Formation fraction of 1.0 used in the PEC_{GW} calculations.

Soil accumulation (Regulation (EU) N° 283/2013, Annex Part A, point 7.1.2.2.2 and Regulation (EU) N° 284/2013, Annex Part A, point 9.1.1.2.2)

Soil accumulation and plateau concentration

Plateau concentration of 0.280 mg/kg reached after 8 years (based on maize calculation – see PEC_{soil} section for further info)

Evaluator	Month and year	Active substance
HSE	July 2022	Bixlozone (F9600)

Section 4 Environmental fate and behaviour

Rate of degradation in soil (anaerobic) laboratory studies active substance (Regulation (EU) N° 283/2013, Annex Part A, point 7.1.2.1.3 and Regulation (EU) N° 284/2013, Annex Part A, point 9.1.1.1)

Parent	Dark anae	Dark anaerobic conditions					
Soil type	pH ^{a)}	t. °C / % MWHC	DT ₅₀ / DT ₉₀ (d)	DT ₅₀ (d) 20 °C ^{b)}	St. (χ ²)	Method of calculation	
Clay	6.9	20 / 26.5	206 / 685	206	5.78	SFO	
Sandy loam	7.3	20 / 17.5	528 / >1000	528	1.39	SFO	
Loamy sand	6.9	20 / 12.2	867 / >1000	867	1.75	SFO	
Silt loam	6.8	20 / 31.0	516 / >1000	516	0.85	SFO	
Geometric mean (if not pH dependent)				470			

^{a)} Measured in [medium to be stated, usually calcium chloride solution or water]

^{b)} Normalised using a Q10 of 2.58

Rate of degradation on soil (photolysis) laboratory active substance (Regulation (EU) N° 283/2013, Annex Part A, point 7.1.1.3

Parent	Soil photol	Soil photolysis							
Soil type	Label	pH ^{a)}	t. °C	DT ₅₀ / DT ₉₀ (d)	DT ₅₀ (d) calculated at 30-50°N	St. (χ ²)	Method of calculation		
Sandy loam	Carbonyl	6.2	20	41 / 137	93	1.44	SFO		
Sandy loam	Phenyl	6.2	20	31 /103	71	2.72	SFO		
Clay loam	Carbonyl	7.3	20	50 / 166	108	1.01	SFO		
Clay loam	Phenyl	7.3	20	67 / 221	142	1.31	SFO		

^{a)} Measured in calcium chloride solution

Evaluator	Month and year	Active substance
HSE	July 2022	Bixlozone (F9600)

Section 4 Environmental fate and behaviour

Soil adsorption active substance (Regulation (EU) N° 283/2013, Annex Part A, point 7.1.3.1.1 and Regulation (EU) N° 284/2013, Annex Part A, point 9.1.2.1)

Parent					
Soil Type	OC %	Soil pH ^{a)}	K _F (mL/g)	K _{Foc} (mL/g)	1/n
Clay	2.1	6.9	7.43	352.9	0.885
Sandy loam	1.3	7.2	4.19	334.2	0.846
Loamy sand	1.5	5.4	7.12	464.9	0.864
Silt loam	1.2	6.1	4.37	364.1	0.879
Loamy sand	0.3	6.9	1.57	458.4	0.885
Silt loam	2.1	6.8	8.31	397.0	0.848
Clay	1.0	8.0	3.62	354.8	0.949
Sand	1.2	7.4	4.26	348.1	0.832
Geometric mean (if not pH dependent)			4.58	381.5	
Arithmetic mean (if not pH depend	Arithmetic mean (if not pH dependent)				0.874
pH dependence			No		

^{a)} Measured in calcium chloride solution

Soil adsorption transformation products (Regulation (EU) N° 283/2013, Annex Part A, point 7.1.3.1.2 and Regulation (EU) N° 284/2013, Annex Part A, point 9.1.2.1)

3-OH-propanamide							
Soil Type	OC %	Soil pH ^{a)}	K _F (mL/g)	K _{Foc} (mL/g)	1/n		
Loamy sand	0.68	4.84	0.73	107	0.924		
Loam	1.89	7.41	1.3	68	0.908		
Silty clay	2.10	7.53	1.4	65	0.916		
Clay	2.62	7.34	2.5	94	0.951		
Geometric mean (if not	pH dependent)		1.35	81.7			
Arithmetic mean (if not	t pH dependent)				0.925		
pH dependence		No					

^{a)} Measured in calcium chloride solution

2,4-DBA: No acceptable values were derived from the study and so default K_{OC} and 1/n values of 0 and 1.0 respectively to be used in the PEC_{GW} calculations.

Evaluator	Month and year	Active substance
HSE	July 2022	Bixlozone (F9600)

Section 4 Environmental fate and behaviour

Mobility in soil column leaching active substance (Regulation (EU) N° 283/2013, Annex Part A, point 7.1.4.1.1 and Regulation (EU) N° 284/2013, Annex Part A, point 9.1.2.1)

Column leaching

No study submitted or required.

Lysimeter / field leaching studies (Regulation (EU) N° 283/2013, Annex Part A, points 7.1.4.2 / 7.1.4.3 and Regulation (EU) N° 284/2013, Annex Part A, points 9.1.2.2 / 9.1.2.3)

Lysimeter/ field leaching studies	No study submitted or required.
Hydrolytic degradation (Regulation (EU) N° 2	83/2013, Annex Part A, point 7.2.1.1
Hydrolytic degradation of the active substance and metabolites > 10 %	pH 5: Bixlozone stable at 50 °C
	pH 7: Bixlozone stable at 50 °C
	pH 9: [¹⁴ C-carbonyl]-label 446 d at 25 °C (SFO, χ^2 =1.01) [¹⁴ C-phenyl]-label 742 d (at 25 °C (SFO, χ^2 =1.01)
	No major metabolites at environmentally relevant conditions

Aqueous photochemical degradation (Regulation (EU) N° 283/2013, Annex Part A, points 7.2.1.2 / 7.2.1.3)

Photolytic degradation of active substance and metabolites above 10 %	[¹⁴ C-carbonyl]-label DT_{50} : 417 h Natural light, 30-50°N; DT_{50} 44.0 days [¹⁴ C-phenyl]-label DT_{50} : 515 h Natural light, 30-50°N; DT_{50} 54.4 days		
	No major metabolites detected		
Quantum yield of direct phototransformation in water at $\Sigma > 290$ nm	Not determined		

'Ready biodegradability' (Regulation (EU) N° 283/2013, Annex Part A, point 7.2.2.1)

Readily biodegradable (yes/no)

Evaluator	Month and year	Active substance
HSE	July 2022	Bixlozone (F9600)

Section 4 Environmental fate and behaviour

Aerobic mineralisation in surface water (Regulation (EU) N° 283/2013, Annex Part A, point 7.2.2.2 and Regulation (EU) N° 284/2013, Annex Part A, point 9.2.1)

Parent										
System identifier	pH water phase	pH sed	t. °C ^{a)}		⁵ 90 whole sys. ed sediment Normalised	St. (χ ²)	DT ₅₀ /D Water (test) At study temp		St. (χ ²)	Method of calculation
Fresh water	7.60	n.p. ^{b)}	20	n.c. ^{c)}	n.c. ^{c)}	n/a	n/a	n/a	n/a	n/a

^{a)} Temperature of incubation=temperature that the environmental media was collected or std temperature of 20°C

^{b)} Data not provided due to being a 'pelagic' study

^{c)} Kinetic evaluation not performed due to <10% degradation observed in the study period

Mineralisation and non-extractable residues (for parent dosed experiments)							
System identifier (indicate fresh, estuarine or marine)	ndicate fresh, phase		Mineralisation % after 62 d. (end of the study).	Non-extractable residues % after 62 d. (end of the study).			
Fresh water	7.60	n.p. ^{a)}	10 μg/L dose: 1.7 100 μg/L dose: 1.0	n.p. ^{a)}			

^{a)} Data not provided due to being a 'pelagic' study

Water / sediment study (Regulation (EU) N° 283/2013, Annex Part A, point 7.2.2.3 and Regulation (EU) N° 284/2013, Annex Part A, point 9.2.2)

Parent	Distribu	Distribution (Max. sed 23.07% after 30 d)								
Water / sediment system	pH water phase	pH sed ^{a)}	t. ⁰C	DegT ₅₀ /DegT ₉₀ whole sys.	St. (χ²)	DissT ₅₀ /DissT ₉₀ water	St. (χ ²)	DissT ₅₀ /DissT ₉₀ Sed	St. (χ ²)	Method of calculation
Calwich Abbey	n.p. ^{b)}	7.1	20	23.3 / 77.6	1.9	13.6 / 45.3	3.0	35.2 / 117	4.9	SFO
Swiss Lake	n.p. ^{b)}	6.1	20	24.8 / 177	4.75	16.0 / 53.1	6.7	n.c. ^{c)}	n.c	HS (whole system) SFO (water phase)

^{a)} Measured in calcium chloride solution

^{b)} Data not provided

^{c)} Not calculated due to no clear decline phase

Evaluator	Month and year	Active substance
HSE	July 2022	Bixlozone (F9600)

Section 4 Environmental fate and behaviour

Metabolites	2,4-DBA ^{a)} : Max in water 30.36% after 100 d. Max in sediment 10.51% after 100 d. Max in total system 40.87% after 100 d.									
	3-OH ^b): Max in water 3.59% after 7 d. Max in sediment 9.92% after 63 d. Max in total system 10.31% after 7 d.									
	 Bixlozone-DMM^{c)}: Max in water 12.36% after 30 d. Max in sediment 5.70% after 63 d. Max in total system 16.72% after 30 d. 4-COOH-bixlozone^d: Max in water 17.60% after 100 d. Max in sediment 6.85% after 100 d. Max in total system 24.45% after 100 d. 									
Water / sediment system	pH water phase	pH sed	t. ⁰C	DT ₅₀ /DT ₉₀ whole sys.	St. (χ ²)	DT ₅₀ /DT ₉₀ water	St. (χ ²)	DT ₅₀ /DT ₉₀ sed	St. (χ ²)	Method of calculation
Calwich Abbey	n.p. ^{e)}	7.1	20	Calculations not undertaken						
Swiss Lake	n.p. ^{e)}	6.1	20	Calculations not undertaken						

^{a)} 2,4-dichlorobenzoic acid

^{b)} 3-OH-propanamide
 ^{c)} Bixlozone-dimethyl malonamide
 ^{d)} 4-carboxy-bixlozone
 ^{e)} Data not provided

Mineralisation and non-extractable residues (from parent dosed experiments)									
Water / sediment system	pH water phase	pH sed	Mineralisation x % after 100 d. (end of the study).	Non-extractable residues in sed. max x % after n d	Non-extractable residues in sed. max x % after 100 d (end of the study)				
Calwich Abbey	n.p. ^{e)}	7.1	Phenyl: 6.67 Carbonyl: 51.55	Phenyl: 14.21(100 d) Carbonyl: 11.80 (100 d)	Phenyl: 14.21 Carbonyl: 11.80				
Swiss Lake	n.p. ^{e)}	6.1	Phenyl: 8.73 Carbonyl: 30.20	Phenyl: 8.78 (30 d) Carbonyl: 9.64 (30 d)	Phenyl: 8.24 Carbonyl: 7.73				

Fate and behaviour in air (Regulation (EU) N° 283/2013, Annex Part A, point 7.3.1)

Direct photolysis in air	Not studied
Photochemical oxidative degradation in air	DT_{50} of 5.974 hours derived by the Atkinson model (AOPWIN version 1.92).
Volatilisation	A wind tunnel study determined that relatively low levels of bixlozone deposition occurred. Highest deposition was measured at the 48 h and 72 h sampling at the 1 m distance and corresponded to 0.42% of applied substance. For lindane the maximum deposition corresponded to about 2.2% of the applied amount (1 m, 48 hours), which was about 5 times higher compared to the relative bixlozone deposition.
	The deposition following volatilisation results are to be added to the exposure assessment where drift mitigation measures are required. The maximum (72 hours after treatment) results are summarised as follows:
	Distance (m) Max deposition (%)

Evaluator	Month and year	Active substance
HSE	July 2022	Bixlozone (F9600)

Section 4 Environmental fate and behaviour

1	0.42
3	0.20
5	0.14
10	0.08
15	0.04
20	0.03
No major metabolite	S

Metabolites

Residues requiring further assessment (Regulation (EU) N° 283/2013, Annex Part A, point 7.4.1)

Environmental occurring residues requiring further	Soil: Bixlozone, 2,4-DBA
assessment by other disciplines (toxicology and ecotoxicology) and or requiring consideration for groundwater exposure	Surface water: Bixlozone, 2,4-DBA, 3-OH, bixlozone- DMM, 4-COOH-bixlozone Sediment: Bixlozone, 2,4-DBA, 3-OH, bixlozone-DMM,
	4-COOH-bixlozone
	Groundwater: Bixlozone, 2,4-DBA

Air: n/a

Definition of the residue for monitoring (Regulation (EU) N° 283/2013, Annex Part A, point 7.4.2)

See section 5, Ecotoxicology

Monitoring data, if available (Regulation (EU) N° 283/2013, Annex Part A, point 7.5

Soil (indicate location and type of study)

Surface water (indicate location and type of study)

Ground water (indicate location and type of study)

Air (indicate location and type of study)

No monitoring data available No monitoring data available

No monitoring data available

No monitoring data available

Evaluator	Month and year	Active substance
HSE	July 2022	Bixlozone (F9600)

Section 4 Environmental fate and behaviour

PECsoil (Regulation (EU) N° 284/2013, Annex Part A, points 9.1.3 / 9.3.1)

Parent	DT ₅₀ (d): 247 days ^{a)}
Method of calculation	Kinetics: SFO
	Field or Lab: representative worst case from SC formulation field studies.
Application data	Crop: Maize
	Depth of soil layer: 5cm
	Soil bulk density: 1.5g/cm ³
	% plant interception: 0
	Number of applications: 1
	Application rate(s): 375 g a.s./ha
	Crop: Winter oilseed rape
	Depth of soil layer: 5cm
	Soil bulk density: 1.5g/cm ³
	% plant interception: 0
	Number of applications: 1
	Application rate(s): 300 g a.s./ha
	Crop: Winter cereals
	Depth of soil layer: 5cm
	Soil bulk density: 1.5g/cm ³
	% plant interception: 0
	Number of applications: 1
	Application rate(s): 200 g a.s./ha
	^{a)} DT_{50} based on SC formulation values. If a CS formulation use is sought, see the conclusion in the Vol 3

CA, section CA.B.8.1.2.3.22.

Evaluator	Month and year	Active substance
HSE	July 2022	Bixlozone (F9600)

Section 4 Environmental fat	e and behaviour
-----------------------------	-----------------

PEC _(s) (mg/kg) Maize		Winter oilseed rape		d rape	Winter cereals		
(8,8)		Actual	TWA	Actual	TWA	Actual	TWA
Initial		0.500		0.400		0.267	
Short term	24h	0.499	0.499	0.399	0.399	0.266	0.266
	2d	0.497	0.499	0.398	0.399	0.265	0.266
	4d	0.494	0.497	0.396	0.398	0.264	0.265
Long term	7d	0.490	0.495	0.392	0.396	0.261	0.264
	14d	0.481	0.490	0.385	0.392	0.256	0.261
	21d	0.471	0.486	0.377	0.388	0.251	0.259
	28d	0.462	0.481	0.370	0.385	0.247	0.256
	48d	0.437	0.468	0.350	0.374	0.233	0.249
	100d	0.378	0.436	0.302	0.349	0.201	0.233
Plateau concentratio	on	0.280 mg/kg after 8 yr		0.224 mg/kg after 7 yr		0.149 mg/kg after 8 yr	
PEC _{accumulati} (PEC _{actual} + PEC _{plateau})		0.780		0.624		0.416	

Metabolite: 2,4-dichlorobenzoic acid (2,4-DBA) Method of calculation

Application data

Molecular weight relative to the parent: 0.697 (191.01 / 274.14)

DT₅₀ (d): n/a

Tier 1 PEC_{soil,initial} calculated from bixlozone PEC_{soil,accumulation} values, based on the molecular weight correction factor and a maximum molar formation in soil of 100%.

Tier 2 PEC_{soil,initial} calculated from bixlozone PEC_{soil,initial} values, based on the molecular weight correction factor and a maximum molar formation in soil of 100%.

PEC _(s) (mg/kg)	Maize		Winter oilseed rape		Winter cereals	
	Actual	TWA	Actual	TWA	Actual	TWA
Tier 1						
Initial	0.544		0.435		0.290	
Tier 2						
Initial	0.349		0.279		0.186	

Evaluator	Month and year	Active substance
HSE	July 2022	Bixlozone (F9600)

Formulation: F9600-4 SC Application data	Application rate calculated using a formulation density of 1.1214 g/cm ³ : Maize – 0.9375 L product/ha (= 1051 g product/ha)
	Winter oilseed rape – 0.75 L product/ha (= 841 g product/ha) Winter cereals – 0.50 L product/ha (= 561 g product/ha)

PEC _(s) (mg	Maize		Winter oilsee	Winter oilseed rape		s
formulation/kg)	Actual	TWA	Actual	TWA	Actual	TWA
Initial	1.402		1.121		0.748	

Evaluator	Month and year	Active substance
HSE	July 2022	Bixlozone (F9600)

Section 4 Environmental fate and behaviour

PEC ground water (Regulation (EU) N° 284/2013, Annex Part A, point 9.2.4.1)

The ground water (Regulation (EC) 14 204/2	· · · · · · · · · · · · · · · · · · ·
Method of calculation and type of study (e.g.	For FOCUS gw modelling, values used –
modelling, field leaching, lysimeter)	Modelling using FOCUS model(s), with appropriate UK FOCUSgw scenarios, according to FOCUS guidance.
	Model(s) used: PEARL 4.4.4, PELMO 5.5.3, MACRO 5.5.4
	Crop uptake factor: 0
	Water solubility (mg/L): 39.6 at pH 7 and 20°C
	Vapour pressure: 0 Pa at 20°C ^{a)}
	Geometric mean DT_{50} : 54.4 d ^{b)} (normalisation to 10kPa or pF2, 20 °C with Q10 of 2.58 and Walker equation coefficient 0.7).
	K_{OC} : geomean 381.5 (K_{OM}: 221.3), arithmetic mean $^{1}/_{n}$ = 0.873
	Metabolite: 2,4-DBA
	Crop uptake factor: 0
	Water solubility (mg/L): 189.4 at pH 7 and 25°C
	Vapour pressure: 9.0 x 10 ⁻³ Pa at 25°C
	Geometric mean DT_{50} : 5.4 d (normalisation to 10kPa or pF2, 20 °C with Q10 of 2.58 and Walker equation coefficient 0.7).
	K_{OC} : geomean 0 (K_{OM} : 0), arithmetic mean $^{1/n}$ = 1.0
	Formation fraction: 1.0 (from parent)
	^{a)} Vapour pressure set to 0 as a conservative assessment to avoid potential double-counting of volatilisation from field study derived DT50.
	^{b)} Correct value to use in future (for SC formulations) is
	48.0 days. DT_{50} based on SC formulation values. If a CS formulation use is sought, see the conclusion in the Vol 3 CA, section CA.B.8.1.2.3.22.
Application rate	Crop: Maize
	Gross application rate: 375 g/ha.
	Crop growth stage: BBCH 0 - 9
	Canopy interception %: 0
	No. of applications: 1
	Time of application (absolute or relative application dates): 5 days pre-emergence
	Crop: Winter oilseed rape
	Gross application rate: 300 g/ha.
	Crop growth stage: BBCH 0 - 9
	Canopy interception %: 0

Evaluator	Month and year	Active substance
HSE	July 2022	Bixlozone (F9600)

Section 4 Environmental fate and behaviour

No. of applications: 1
Time of application (absolute or relative application dates): 5 days pre-emergence
Crop: Winter cereals
Gross application rate: 200 g/ha.
Crop growth stage: BBCH 0 - 9
Canopy interception %: 0
No. of applications: 1
Time of application (absolute or relative application dates): 5 days pre-emergence
Crop: Winter cereals
Gross application rate: 200 g/ha.
Crop growth stage: BBCH 11 - 13
Canopy interception %: 0
No. of applications: 1
Time of application (absolute or relative application dates): 5 days post-emergence

$PEC(gw) \mbox{ - FOCUS modelling results (80^{th} \mbox{ percentile annual average concentration at 1m)}$

Сгор	Maize (1 × 375 g a.s/ha, BBCH 00-09)					
	Bixlozone			2,4-dichlorobenzoic acid (2,4-DBA)		
LOCATION	PELMO 5.5.3	PEARL 4.4.4	MACRO 5.5.4	PELMO 5.5.3	PEARL 4.4.4	MACRO 5.5.4
Châteaudun	< 0.001	< 0.001	<0.001	0.206	0.266	-
Hamburg	< 0.001	< 0.001	-	2.397	2.787	-
Kremsmünster	< 0.001	< 0.001	-	0.896	0.672	-
Okehampton	< 0.001	< 0.001	-	1.453	1.176	-

Сгор	Winter oilseed rape (1 × 300 g a.s/ha, BBCH 00-09)					
	Bixlozone			2,4-dichlorobenzoic acid (2,4-DBA)		
LOCATION	PELMO 5.5.3	PEARL 4.4.4	MACRO 5.5.4	PELMO 5.5.3	PEARL 4.4.4	MACRO 5.5.4
Châteaudun	< 0.001	< 0.001	< 0.001	0.479	0.325	-
Hamburg	< 0.001	< 0.001	-	4.048	3.257	-
Kremsmünster	< 0.001	< 0.001	-	1.432	0.890	-
Okehampton	< 0.001	< 0.001	-	2.054	1.292	-

Evaluator	Month and year	Active substance
HSE	July 2022	Bixlozone (F9600)

Сгор	Winter cereals (1 × 200 g a.s/ha, BBCH 00-09)					
	Bixlozone			2,4-dichlorobenzoic acid (2,4-DBA)		
LOCATION	PELMO 5.5.3	PEARL 4.4.4	MACRO 5.5.4	PELMO 5.5.3	PEARL 4.4.4	MACRO 5.5.4
Châteaudun	< 0.001	< 0.001	< 0.001	0.222	0.186	-
Hamburg	< 0.001	< 0.001	-	2.599	1.863	-
Kremsmünster	< 0.001	< 0.001	-	0.627	0.371	-
Okehampton	< 0.001	< 0.001	-	1.540	1.107	-

Сгор	Winter cereals (1 × 200 g a.s/ha, BBCH 11-13)					
	Bixlozone			2,4-dichlo	robenzoic acid	(2,4-DBA)
LOCATION	PELMO 5.5.3	PEARL 4.4.4	MACRO 5.5.4	PELMO 5.5.3	PEARL 4.4.4	MACRO 5.5.4
Châteaudun	< 0.001	< 0.001	< 0.001	0.202	0.166	-
Hamburg	< 0.001	< 0.001	-	2.335	1.678	-
Kremsmünster	< 0.001	< 0.001	-	0.553	0.341	-
Okehampton	< 0.001	< 0.001	-	1.481	1.003	-

Evaluator	Month and year	Active substance
HSE	July 2022	Bixlozone (F9600)

Section 4 Environmental fate and behaviour

PEC surface water and PEC sediment (Regulation (EU) N° 284/2013, Annex Part A, points 9.2.5 / 9.3.1)

Parent	Parent: Bixlozone
Parameters used in spray drift and tier 1 drainflow	Molecular weight (g/mol): 274.14
assessments	K _{OC} (mL/g): 381.5
	DissT ₅₀ water (d): 16.0
	DissT ₅₀ sediment (d): 35.2
	Max observed sediment (%): 23.07
	Metabolite: 2,4-DBA
	Molecular weight (g/mol): 191.01
	K _{OC} (mL/g): 0
	DissT ₅₀ water (d): 1000
	DissT ₅₀ sediment (d): 1000
	Max observed soil (%): 100 ^{a)}
	Max observed water/sediment (%): 40.9
	Max observed water (%): 30.36
	Max observed sediment (%): 10.51
	Metabolite: 3-OH
	Molecular weight (g/mol): 276.16
	DissT ₅₀ water (d): 1000
	DissT ₅₀ sediment (d): 1000 d
	Max observed soil (%): 0
	Max observed water/sediment (%): 10.3
	Max observed water (%): 3.59
	Max observed sediment (%): 9.92
	Metabolite: DMM
	Molecular weight (g/mol): 290.15
	DissT ₅₀ water (d): 1000
	DissT ₅₀ sediment (d): 1000
	Max observed soil (%): 0
	Max observed water/sediment (%): 16.7
	Max observed water (%): 12.36
	Max observed sediment (%): 5.70
	1

HSE July 2022 Bixlozone (F9600) Section 4 Environmental fate and behaviour Metabolite: 4-carboxy-bixlozone Molecular weight (g/mol): 304.10 DisST ₈₀ water (d): 1000 DisST ₈₀ water (d): 1000 DisST ₈₀ water (d): 1000 Max observed soil (%): 0 Max observed water/sediment (%): 24.5 Max observed water/sediment (%): 17.60 Max observed water/sediment (%): 24.5 Max observed water (%): 17.60 Max observed water (%): 17.60 Max observed water (%): 17.60 Max observed sediment (%): 6.85 Parameters used in Higher Tier Drainflow (HTDF) Version control of HTDF tool: v1.1 Parcent: Bixlozone DT ₈₀ soil (d): 54.4% Koc (mL/g): 381.5 In: 0.873 Q10: 2.58 Crop uptake factor: 0 RAC: Aquatic invertebrates: 6.69 µgL (see ecotoxicology section) Metabolite: 2.4-DBA DT ₈₀ soil (d): 5.4 Koc (mL/g): 0 I/m: 1.0 Q10: 2.58 Crop uptake factor: 0 Formation fraction: 1 RAC: Aquatic invertebrates: 12 µgL Aquatic invertebrates: 12 µgL (see cotoxicology section) Application rate Crop and growth stage: Maize (BBCH 00-09) Number of applications: 1 Application rolowing volth st	Evaluator	Month and yearActive substanceJuly 2022Bixlozone (F9600)					
Metabolite: 4-carboxy-bixlozone Molecular weight (g/mol): 304.10 DissTs0 water (d): 1000 Max observed soil (%): 0 Max observed water/sediment (%): 24.5 Max observed water (%): 17.60 Max observed water (%): 17.60 Max observed water (%): 6.85Parameters used in Higher Tier Drainflow (HTDF) assessmentVersion control of HTDF tool: v1.1 Parent: Bixlozone DTs0 soil (d): 54.4°) Koc (mL/g): 381.5 L/n: 0.873 Q10: 2.58 Crop uptake factor: 0 RAC: Aquatic plants: 3.3 µg/L Aquatic invertebrates: 6.69 µg/L (see ecotoxicology section)Metabolite: 2.4-DBA DTs0 soil (d): 5.4 Koc (mL/g): 0 L/n: 1.0 Q10: 2.58 Crop uptake factor: 0 Formation fraction: 1 RAC: Aquatic invertebrates: 12 µg/L (see ecotoxicology section)Application rateCrop and growth stage: Maize (BBCH 00-09) Number of application stale: 00, 2.77 (1 m buffer) °0 0.14 (5 and position following volutilisation) HTDF target application date: 30 April Crop and growt stage: Winter oilseed rape (BBCH 00-0	HSE	July 2022	Bixlozone (F9600)				
Molecular weight (g/mol): 304.10DissTs0 water (d): 1000DissTs0 water (d): 1000Max observed water/sediment (%): 24.5Max observed water/sediment (%): 24.5Max observed water/sediment (%): 24.5Max observed water/sediment (%): 24.5Max observed water/sediment (%): 6.85Parameters used in Higher Tier Drainflow (HTDF)Version control of HTDF tool: v1.1assessmentParameters used in Higher Tier Drainflow (HTDF)Version control of HTDF tool: v1.1assessmentParamet BixlozoneDTs0 soil (d): 54.4%Koc (ml/g): 381.51/m: 0.873Q10: 2.58Crop uptake factor: 0RAC: Aquatic plants: 3.3 µg/LAquatic invertebrates: 6.69 µg/L(see ecotoxicology section)Metabolite: 2.4-DBADTs0 soil (d): 5.4Koc (ml/g): 01/m: 1.0Q10: 2.58Crop uptake factor: 0Formation fraction: 1RAC: Aquatic plants: 2400 µg/LAquatic invertebrates: 12 µg/L(see ecotoxicology section)Application rateCrop and growth stage: Maize (BBCH 00-09)Number of applications: 1Application rate(%): 2.77 (1 m buffer]°0.17 (5 m buffer - 0.57% drift plus 0.14% deposition following volatilisation)HTDF target application date: 30 AprilCrop and growth stage: Winter oilseed rape (BBCH 00-0)	Section 4 Environmental fate a	nd behaviour					
(see ecotoxicology section)Metabolite: 2,4-DBADT50 soil (d): 5.4Koc (mL/g): 01/n: 1.0Q10: 2.58Crop uptake factor: 0Formation fraction: 1RAC: Aquatic plants: 2400 µg/L Aquatic invertebrates: 12 µg/L (see ecotoxicology section)Application rateCrop and growth stage: Maize (BBCH 00-09) Number of applications: 1 Application rate(s): 375 g a.s./ha Spray drift value (%): 2.77 (1 m buffer) c) 0.14% deposition following volatilisation)HTDF target application date: 30 AprilCrop and growth stage: Winter oilseed rape (BBCH 00-09)	-	Drainflow (HTDF)	Molecular weight (g/mol): 304.10 DissT ₅₀ water (d): 1000 DissT ₅₀ sediment (d): 1000 Max observed soil (%): 0Max observed water/sediment (%): 24.5 Max observed water (%): 17.60 Max observed sediment (%): 6.85 Version control of HTDF tool: v1.1Parent: BixlozoneDT ₅₀ soil (d): 54.4^{b} K _{OC} (mL/g): 381.5 1/n: 0.873 Q10: 2.58 Crop uptake factor: 0				
09) Number of applications: 1	Application rate		(see ecotoxicology section) Metabolite: 2,4-DBA DT_{50} soil (d): 5.4 K_{OC} (mL/g): 0 1/n: 1.0 Q10: 2.58 Crop uptake factor: 0 Formation fraction: 1 RAC: Aquatic plants: 2400 µg/L Aquatic invertebrates: 12 µg/L (see ecotoxicology section) Crop and growth stage: Maize (BBCH 00-09) Number of applications: 1 Application rate(s): 375 g a.s./ha Spray drift value (%): 2.77 (1 m buffer) ^{c)} 0.71 (5 m buffer - 0.57% drift plus 0.14% deposition following volatilisation) HTDF target application date: 30 April Crop and growth stage: Winter oilseed rape (BBCH 00-09) 9)				
			Spray drift value (%): 2.77 (1 m buffer) ^{c)}				

Evaluator	Month and year	Active substance		
HSE	July 2022	Bixlozone (F9600)		

Section 4 Environmental fate and behaviour

HTDF target application date: 10 September									
Crop and growt	h stage: W	inter cereals (BBCH 00-09 and						
11 - 13)	C	,							
Number of appl	lications: 1								
Application rate	Application rate(s): 200 g a.s./ha								
Spray drift valu			c)						
			nachine working						
day dates:	pirounon c		interine in orning						
		Climat	e						
Soil	Dry	Medium	Wet/Very wet						
Denchworth	25 Oct	15 Oct	5 Oct						
Hanslope	25 Oct	15 Oct	5 Oct						
Brockhurst	25 Oct	21 Oct	10 Oct						
Clifton	25 Oct	21 Oct	10 Oct						
Metabolite spray drift pseudo-application rates calculated based on parent application rate x molecular weight correction factor x maximum percentage in water or sediment (for PEC _{sw} and PEC _{sed} respectively). 2,4-DBA tier 1 drainflow pseudo-application rate calculated based on parent application rate x molecular weight correction factor x maximum percentage in soil ^a).									
For metabolites formed in water or sediment, the bixlozone initial PEC _{SW,drainflow} has been converted to metabolite PEC _{SW/sed} by multiplying the parent PEC _{SW} with the molecular weight correction factor, percent formed in water or sediment and, for PEC _{sed} calculations, an additional conversion factor of 4.615. ^{a)} 2,4-DBA detected at maximum occurrence of 69.4 % (mass basis, 99.53% molar basis) in soil disspation studies, however, 100% formation considered in PEC _{SW/sed} calculations as worst-									
case. b) Correct value to									

days. DT_{50} based on SC formulation values. If a CS formulation use is sought, see the conclusion in the Vol 3 CA, section CA.B.8.1.2.3.22.

^{c)} No deposition after volatilisation considered at 1 m, in line with FOCUS Air (2008); if a buffer >1 m required, see volatilisation section above.

Evaluator	Month and year	Active substance
HSE	July 2022	Bixlozone (F9600)

Maize (375 g a.s./ha) spray drift PECsw (µg/L) – 1 m buffer											
$\frac{1}{2} \sum_{n=1}^{\infty} \frac{1}{2} \sum_{n=1}^{\infty} \frac{1}$		Bixlo	ozone	2,4-DBA		3-0	ЭH	DMM		4-carboxy- bixlozone	
		Actual	TWA	Actual	TWA	Actual	TWA	Actual	TWA	Actual	TWA
Initial		3.463		0.732		0.126		0.453		0.676	
Short term	24 h	3.316	3.389	0.732	0.732	0.125	0.126	0.453	0.453	0.675	0.676
	2 d	3.175	3.317	0.731	0.732	0.125	0.125	0.453	0.453	0.675	0.675
	4 d	2.912	3.179	0.730	0.731	0.125	0.125	0.452	0.453	0.674	0.675
Long term	7 d	2.557	2.987	0.729	0.730	0.125	0.125	0.451	0.452	0.673	0.674
	14 d	1.888	2.596	0.725	0.729	0.124	0.125	0.449	0.451	0.669	0.673
	21 d	1.394	2.274	0.722	0.727	0.124	0.125	0.447	0.450	0.666	0.671
	28 d	1.029	2.006	0.718	0.725	0.123	0.124	0.445	0.449	0.663	0.669
	100 d	0.045	0.789	0.683	0.707	0.117	0.121	0.423	0.438	0.631	0.653
PECsed (µg/kg	g) <mark>– 1 m</mark>	buffer								_	
		Bixlo	zone	2,4-I	OBA	3-0	ΟH	DN	ſM	4-carl bixlo	-
		Actual	TWA	Actual	TWA	Actual	TWA	Actual	TWA	Actual	TWA
Initial		3.687		0.355		0.057		0.119		0.214	
Short term	24 h	3.615	3.651	0.355	0.355	0.057	0.057	0.119	0.119	0.214	0.214
	2 d	3.544	3.615	0.355	0.355	0.057	0.057	0.119	0.119	0.213	0.214
	4 d	3.408	3.545	0.354	0.355	0.057	0.057	0.119	0.119	0.213	0.213
Long term	7 d	3.212	3.444	0.353	0.354	0.057	0.057	0.119	0.119	0.213	0.213
	14 d	2.798	3.222	0.352	0.353	0.057	0.057	0.118	0.119	0.212	0.213
	21 d	2.438	3.020	0.350	0.353	0.057	0.057	0.118	0.118	0.211	0.212
	28 d	2.124	2.834	0.348	0.352	0.056	0.057	0.117	0.118	0.210	0.212
	100 d	0.515	1.611	0.331	0.343	0.054	0.056	0.111	0.115	0.199	0.206
$PECsw (\mu g/L) - 5 m buffer$											
	Bixlozone		<mark>2,4-I</mark>	<mark>DBA</mark>	3-OH		DMM		4-carl bixlo		
		Actual	TWA	Actual	TWA	Actual	TWA	Actual	TWA	Actual	TWA
Initial	0.888										
PECsed (μ g/kg) – 5 m buffer											
	Bixlozone		ne	2,4-DBA 3-OH		DMM		4-carboxy- bixlozone			
		Actual	TWA	Actual	TWA	Actual	TWA	Actual	TWA	Actual	TWA
Initial		<mark>0.945</mark>									

Evaluator	Month and year	Active substance
HSE	July 2022	Bixlozone (F9600)

PECsw (µg/I	Winter oilseed rape (300 g a.s./ha) spray drift PECsw (µg/L) – 1 m buffer										
		Bixlo	ozone	2,4-I	OBA	3-0	ЭH	DN	ſМ	4-carboxy- bixlozone	
		Actual	TWA	Actual	TWA	Actual	TWA	Actual	TWA	Actual	TWA
Initial		2.770		0.586		0.100		0.362		0.541	
Short term	24 h	2.653	2.711	0.586	0.586	0.100	0.100	0.362	0.362	0.541	0.541
	2 d	2.540	2.653	0.586	0.586	0.100	0.100	0.361	0.362	0.540	0.541
	4 d	2.329	2.543	0.585	0.586	0.099	0.100	0.361	0.361	0.540	0.540
Long term	7 d	2.045	2.389	0.583	0.585	0.099	0.099	0.360	0.361	0.538	0.540
	14 d	1.510	2.077	0.581	0.583	0.099	0.099	0.358	0.360	0.536	0.538
	21 d	1.115	1.819	0.578	0.582	0.098	0.099	0.357	0.359	0.533	0.537
	28 d	0.824	1.605	0.575	0.581	0.098	0.099	0.355	0.358	0.531	0.536
	100 d	0.036	0.631	0.547	0.566	0.093	0.096	0.338	0.350	0.505	0.523
PECsed (µg/l	u buffer										
		Bixlo	ozone	2,4-I	OBA	3-0	ЭH	DN	ſМ	4-carl bixlo	
		Actual	TWA	Actual	TWA	Actual	TWA	Actual	TWA	Actual	TWA
Initial		2.949		0.284		0.046		0.095		0.171	
Short term	24 h	2.892	2.921	0.284	0.284	0.046	0.046	0.095	0.095	0.171	0.171
	2 d	2.836	2.892	0.284	0.284	0.046	0.046	0.095	0.095	0.171	0.171
	4 d	2.726	2.836	0.284	0.284	0.046	0.046	0.095	0.095	0.171	0.171
Long term	7 d	2.570	2.755	0.283	0.284	0.045	0.046	0.095	0.095	0.170	0.171
	14 d	2.239	2.578	0.282	0.283	0.045	0.045	0.094	0.095	0.169	0.170
	21 d	1.950	2.416	0.280	0.282	0.045	0.045	0.094	0.095	0.169	0.170
	28 d	1.699	2.267	0.279	0.282	0.045	0.045	0.093	0.094	0.168	0.169
	100 d	0.412	1.289	0.265	0.275	0.043	0.044	0.089	0.092	0.160	0.165

Evaluator	Month and year	Active substance
HSE	July 2022	Bixlozone (F9600)

Winter cereals (200 g a.s./ha) spray drift											
PECsw (µg/L) – 1 m buffer											
		Bixlo	ozone	2,4-I	OBA	3-0	OH	DN	ſМ	4-carl bixlo	•
		Actual	TWA	Actual	TWA	Actual	TWA	Actual	TWA	Actual	TWA
Initial		1.847		0.391		0.066		0.242		0.360	
Short term	24 h	1.768	1.807	0.390	0.390	0.066	0.066	0.242	0.242	0.360	0.360
	2 d	1.693	1.769	0.390	0.390	0.066	0.066	0.242	0.242	0.360	0.360
	4 d	1.553	1.696	0.389	0.390	0.066	0.066	0.241	0.242	0.359	0.360
Long term	7 d	1.364	1.593	0.389	0.390	0.066	0.066	0.241	0.241	0.358	0.359
	14 d	1.007	1.385	0.387	0.389	0.066	0.066	0.240	0.241	0.357	0.358
	21 d	0.744	1.213	0.385	0.388	0.066	0.066	0.238	0.240	0.355	0.357
	28 d	0.549	1.070	0.383	0.387	0.065	0.066	0.237	0.240	0.353	0.357
	100 d	0.024	0.421	0.364	0.377	0.062	0.064	0.226	0.234	0.336	0.348
PECsed (µg/	kg) <mark>– 1 m</mark>	buffer									
		Bixlo	ozone	2,4-I	OBA	3-0	OH	DN	ſМ	4-carl bixlo	
		Actual	TWA	Actual	TWA	Actual	TWA	Actual	TWA	Actual	TWA
Initial		1.966		0.189		0.030		0.064		0.114	
Short term	24 h	1.928	1.947	0.189	0.189	0.030	0.030	0.064	0.064	0.114	0.114
	2 d	1.890	1.928	0.189	0.189	0.030	0.030	0.064	0.064	0.114	0.114
	4 d	1.817	1.891	0.189	0189	0.030	0.030	0.063	0.064	0.114	0.114
Long term	7 d	1.713	1.837	0.189	0.189	0.030	0.030	0.063	0.063	0.113	0.114
	14 d	1.493	1.719	0.188	0.189	0.030	0.030	0.063	0.063	0.113	0.113
	21 d	1.300	1.610	0.187	0.188	0.030	0.030	0.063	0.063	0.112	0.113
	28 d	1.133	1.511	0.186	0.188	0.030	0.030	0.062	0.063	0.112	0.113
	100 d	0.274	0.859	0.177	0.183	0.028	0.029	0.059	0.061	0.106	0.110

Evaluator	Month and year	Active substance
HSE	July 2022	Bixlozone (F9600)

Tier 1 drainflow, Maize									
	PECsw/sed	ı from soil	PECsw/sed for metabolites formed in water/sedimer						
	$PEC_{SW} (\mu g/L)$	$PEC_{sed}(\mu g/kg)$	PEC_{SW} (µg/L)	PEC _{sed} (µg/kg)					
Bixlozone	20.192	21.500	-	-					
2,4-DBA	38.146	176.06	4.271	6.824					
3-OH	n/a	n/a	0.730	9.312					
DMM	n/a	n/a	2.641	5.622					
4-carboxy- bixlozone	n/a	n/a	3.942	7.081					

Tier 1 drainflow, Winter oilseed rape										
	PECsw/sec	ı from soil	PECsw/sed for metabolites formed in water/sedimen							
	$PEC_{SW} (\mu g/L)$	$PEC_{sed}(\mu g/kg)$	PEC_{SW} (µg/L)	PEC_{sed} (µg/kg)						
Bixlozone	16.154	17.200	-	-						
2,4-DBA	30.546	140.98	3.417	5.459						
3-OH	n/a	n/a	0.584	7.450						
DMM	n/a	n/a	2.113	4.498						
4-carboxy- bixlozone	n/a	n/a	3.154	5.665						

Tier 1 drainflow, Winter cereals							
	PECsw/sed	from soil	PECsw/sed for metabolites formed in water/sediment				
	$PEC_{SW} (\mu g/L)$	$PEC_{sed}(\mu g/kg)$	PEC_{SW} (µg/L)	$PEC_{sed}(\mu g/kg)$			
Bixlozone	10.769	11.467	-	-			
2,4-DBA	20.315	93.763	2.278	3.639			
3-OH	n/a	n/a	0.389	4.966			
DMM	n/a	n/a	1.409	2.998			
4-carboxy- bixlozone	n/a	n/a	2.102	3.776			

HTD	HTDF – Maize – Approach 1 (number of RAC exceedances (percentage in brackets))							
		Aquatic plants RACs						
Soil	Bixlo z	zone (RAC: 3.3	<mark>μg/L)</mark>	<mark>2,4-D</mark>]	BA (RAC: 2400	μg/L)		
3011	Dry Climate	<mark>Medium</mark> Climate	<mark>Wet</mark> Climate	Dry Climate	<mark>Medium</mark> Climate	<mark>Wet</mark> Climate		
Denchworth	1 (3.3)	2 (6.7)	1 (3.3)	0	0	0		
Hanslope	0	0	0	0	0	0		
Brockhurst	0	0	0	0	0	0		
Clifton	0	0	0	0	0	0		
			Aquatic inver	tebrate RACs				
	Bixlozone (RAC: 6.69 μg/L) 2,4-DBA (RAC: 12 μg/L)					<mark>ıg/L)</mark>		
Denchworth	0	0	0	1 (3.3)	0	0		
Hanslope	0	0	0	1 (3.3)	0	0		

Evaluator	Month and year	Active substance
HSE	July 2022	Bixlozone (F9600)

HTD	HTDF – Maize – Approach 1 (number of RAC exceedances (percentage in brackets))							
	Aquatic plants RACs							
Soil	Bixlo 2	zone (RAC: 3.3	μg/L)	<mark>2,4-D</mark>	BA (RAC: 2400	μg/L)		
501	Dry Climate	<mark>Medium</mark> Climate	<mark>Wet</mark> Climate	Dry Climate	<mark>Medium</mark> Climate	<mark>Wet</mark> Climate		
Brockhurst	0	0	0	0	0	0		
Clifton	0	0	0	0	0	0		
	Ca	mbined assessn	nents (Finney e	quation with ar	nual max PECs	sw)		
		Aquatic plants		Aquatic invertebrates				
Denchworth	1 (3.3)	2 (6.7)	1 (3.3)	<mark>3 (10)</mark>	0	<mark>3 (10)</mark>		
Hanslope	0	0	0	2 (6.7)	0	1 (3.3)		
Brockhurst	0	0	0	0	0	0		
Clifton	0	0	0	0	0	0		

HTDF – Maize – Approach 2 (weighted level of exceedances)								
Soil drainage status	Bixlozone (aquatic plant RAC)	<mark>2,4-DBA (aquatic</mark> invertebrate RAC)	Combined annual max PECsw (aquatic plant RACs)	Combined annual max PECsw (aquatic invertebrate RACs)				
Not drained	50.01	<mark>50.01</mark>	50.01	<mark>50.01</mark>				
Peat	<mark>1.56</mark>	<mark>1.56</mark>	<mark>1.56</mark>	<mark>1.56</mark>				
Drained but 'safe'	48.05	<mark>48.36</mark>	<mark>48.05</mark>	<mark>47.64</mark>				
Drained and not 'safe'	0.38	0.07	0.38	<mark>0.79</mark>				
Total 'safe' years	<mark>99.62</mark>	<mark>99.93</mark>	<mark>99.62</mark>	<mark>99.21</mark>				

HTD	HTDF – wOSR – Approach 1 (number of RAC exceedances (percentage in brackets))						
	Aquatic plants RACs						
Soil	Bixlo z	zone (RAC: 3.3	μg/L)	<mark>2,4-D</mark> I	BA (RAC: 2400	<mark>μg/L)</mark>	
	Dry Climate	<mark>Medium</mark> Climate	<mark>Wet</mark> Climate	Dry Climate	<mark>Medium</mark> Climate	Wet Climate	
Denchworth	0	0	0	0	0	0	
Hanslope	0	0	0	0	0	0	
Brockhurst	0	0	0	0	0	0	
Clifton	0	0	0	0	0	0	
-			Aquatic inve	rtebrate RACs			
-	Bixloz	one (RAC: 6.69	<mark>) μg/L)</mark>	<mark>2,4-</mark> D	BA (RAC: 12 μ	<mark>ıg/L)</mark>	
Denchworth	0	0	0	0	0	0	
Hanslope	0	0	0	0	0	0	
Brockhurst	0	0	0	0	0	0	
Clifton	0	0	0	0	0	0	
_	Ca	ombined assessr	nents (Finney e	quation with an	nual max PECs	w)	

Evaluator	Month and year	Active substance
HSE	July 2022	Bixlozone (F9600)

HTD	HTDF – wOSR – Approach 1 (number of RAC exceedances (percentage in brackets))						
	Aquatic plants RACs						
Soil	Bixlo	zone (RAC: 3.3	μg/L)	<mark>2,4-D</mark> I	BA (RAC: 2400	μg/L)	
	Dry <mark>Climate</mark>	<mark>Medium</mark> Climate	<mark>Wet</mark> Climate	Dry Climate	<mark>Medium</mark> Climate	<mark>Wet</mark> Climate	
		Aquatic plants		Aq	uatic invertebra	ites	
Denchworth	0	<mark>4 (13)</mark>	<mark>3 (10)</mark>	0	<mark>4 (13)</mark>	2 (6.7)	
Hanslope	0	4 (13)	0	0	3 (10)	0	
Brockhurst	0	0	0	0	0	0	
Clifton	0	0	0	0	0	0	
-		Combined asso	essments (Finne	ey equation with	daily PECsw)		
-		Aquatic plants		Aq	uatic invertebra	ites	
Denchworth				0	3 (10)	1 (3.3)	
Hanslope	Not required			0	2 (6.7)	0	
Brockhurst				0	0	0	
Clifton				0	0	0	

HTDF – wOSR – Approach 2 (weighted level of exceedances)							
<mark>Soil drainage status</mark>	Bixlozone (aquatic plant RAC)	2,4-DBA aquatic invertebrate RAC)	Combined annual max PECsw (aquatic plant <u>RACs)</u>	Combined annual max PECsw (aquatic invertebrate RACs)	Combined daily PECsw (aquatic invertebrate RACs)		
Not drained	<mark>44.80</mark>	<mark>44.80</mark>	<mark>44.80</mark>	44.80	<mark>44.80</mark>		
Peat	1.54	<mark>1.54</mark>	<mark>1.54</mark>	1.54	1.54		
Drained but 'safe'	<mark>53.66</mark>	<mark>53.66</mark>	52.07	<mark>52.35</mark>	<mark>52.76</mark>		
Drained and not 'safe'	0.00	0.00	<mark>1.59</mark>	1.31	<mark>0.90</mark>		
Total 'safe' years	100.00	100.00	<mark>98.41</mark>	<mark>98.69</mark>	<mark>99.10</mark>		

HTDF – winter cereals – Approach 1 (number of RAC exceedances (percentage in brackets))							
	Aquatic plants RACs						
Soil	Bixlo z	zone (RAC: 3.3	<mark>μg/L)</mark>	<mark>2,4-D</mark> I	BA (RAC: 2400	<mark>μg/L)</mark>	
301	Dry Climate	<mark>Medium</mark> Climate	<mark>Wet</mark> Climate	Dry Climate	<mark>Medium</mark> Climate	<mark>Wet</mark> Climate	
Denchworth	0	0	0	0	0	0	
Hanslope	0	0	0	0	0	0	
Brockhurst	0	0	0	0	0	0	
Clifton	0	0	0	0	0	0	
-			Aquatic inver	tebrate RACs			
	<mark>Bixlozone (RAC: 6.69 µg/L)</mark>			<mark>2,4-</mark> D)BA (RAC: 12 µ	<mark>ıg/L)</mark>	
Denchworth	0	0	0	0	0	0	
Hanslope	0	0	0	0	0	0	

Evaluator	Month and year	Active substance
HSE	July 2022	Bixlozone (F9600)

Section 4 Environmental fate and behaviour

HTDF –	HTDF – winter cereals – Approach 1 (number of RAC exceedances (percentage in brackets))							
	Aquatic plants RACs							
Soil	Bixlo z	zone (RAC: 3.3	μg/L)	2,4-D	BA (RAC: 2400	μg/L)		
	Dry Climate	<mark>Medium</mark> Climate	<mark>Wet</mark> Climate	Dry Climate	<mark>Medium</mark> Climate	<mark>Wet</mark> Climate		
Brockhurst	0	0	0	0	0	0		
Clifton	0	0	0	0	0	0		
_	Co	mbined assessr	nents (Finney e	quation with an	nual max PECs	sw)		
-		Aquatic plants		Aquatic invertebrates				
Denchworth	0	0	0	0	0	0		
Hanslope	0	0	0	0	0	0		
Brockhurst	0	0	0	0	0	0		
Clifton	0	0	0	0	0	0		

HTDF – winter cereals – Approach 2 (weighted level of exceedances)						
<mark>Soil drainage status</mark>	toil drainage status (aquatic plant RAC) (aquatic plant invertebrate RAC) PECsw (a		Combined annual max PECsw (aquatic plant RACs)	Combined annual max PECsw (aquatic invertebrate RACs)		
Not drained	<mark>49.67</mark>	<mark>49.67</mark>	<mark>49.67</mark>	<mark>49.67</mark>		
Peat	2.87	<mark>2.87</mark>	2.87	<mark>2.87</mark>		
Drained but 'safe'	<mark>47.46</mark>	<mark>47.46</mark>	<mark>47.46</mark>	<mark>47.46</mark>		
Drained and not 'safe'	0.00	0.00	0.00	0.00		
Total 'safe' years	100.00	100.00	100.00	100.00		

Formulation: bixlozone-4 SC	Application rate calculated using a formulation density of 1.1214 g/cm ³ :
Application data	Maize – 0.9375 L product/ha (= 1051 g product/ha)
	Winter oilseed rape – 0.75 L product/ha (= 841 g product/ha)
	Winter cereals – 0.50 L product/ha (= 561 g product/ha)

PEC _(SW, spray drift) (µg/L)	Maize		Winter oilseed rape		Winter cereals	
(µg/2)	Actual	TWA	Actual	TWA	Actual	TWA
Initial	9.704		7.765		5.180	

Estimation of concentrations from other routes of exposure (Regulation (EU) N° 284/2013, Annex Part A, point 9.4)

Method of calculation

No other routes of exposure considered

Evaluator	Month and year	Active substance
HSE	July 2022	Bixlozone (F9600)

Evaluator	Month and year	Active substance
HSE	July 2022	Bixlozone (F9600)

Section 5 Ecotoxicology

Ecotoxicology

Effects on birds and other terrestrial vertebrates (Regulation (EU) N° 283/2013, Annex Part A, point 8.1 and Regulation (EU) N° 284/2013, Annex Part A, point 10.1)

Species	Test substance	Time scale	End point	Toxicity (mg/kg bw per day)
Birds				
Colinus virginianus	Bixlozone	Acute	LD ₅₀	>2000
Colinus virginianus	Bixlozone	Long-term	NOEL	77.7 (893 mg/kg feed)
Mammals				
Rat	Bixlozone	Acute	LD ₅₀	>2000
Rat	Bixlozone	Long-term	NOAEL	34 (based on parental reproductive toxicity)
Endocrine disrupting prop	erties (Annex Part A, poin	ts 8.1.5)		
Regulations (EU) 528/201 criteria for the EATS-mod	A/JRC guidance (2018) for 2 and (EC) No 1107/2009, allities and that these have sion for birds or reptiles at	HSE concluded that been sufficiently inv	bixlozone did no estigated for mam	ot meet the ED nmals. It is not

Additional higher tier studies (Annex Part A, points 10.1.1.2):

Not provided

Terrestrial vertebrate wildlife (birds, mammals, reptile and amphibians) (Annex Part A, points 8.1.4, 10.1.3):

Not provided

Bold indicates endpoints used in risk assessment

Toxicity/exposure ratios for terrestrial vertebrates (Regulation (EU) N° 284/2013, Part A, Annex point 10.1)

Winter wheat BBCH 11 - 13 at 200 g a.s./ha x 1 application

Growth stage	Indicator or focal species	Time scale	DDD (mg/kg bw per day)	TER	Trigger	
Screening Step ((Birds)					
All	Small omnivorous bird	Acute	31.76	>63.0	10	
All	Small omnivorous bird	Long-term	6.87	11.3	5	
Tier 1 (Birds): N	lot required					
Higher tier (bird	s): Not required					
Screening Step ((Mammals)					
All	Small herbivorous mammal	Acute	23.68	>84.5	10	
All	Small herbivorous mammal	Long-term	5.12	6.6	5	
Tier 1 (Mammals): Not required						
Higher tier (Mar	Higher tier (Mammals): Not required					

Evaluator	Month and year	Active substance
HSE	July 2022	Bixlozone (F9600)

Section 5 Ecotoxicology

Maize BBCH 00 - 09 at 375 g a.s./ha x 1 application

Growth stage	Indicator or focal species	Time scale	DDD (mg/kg bw per day)	TER	Trigger		
Screening Step	Screening Step (Birds)						
All	Small granivorous bird	Acute	9.49	>210.8	10		
All	Small granivorous bird	Long-term	2.27	34.2	5		
Tier 1 (Birds): N							
	ls): Not required						
Screening Step							
All	Small granivorous mammal	Acute	5.40	>370	10		
All	Small granivorous mammal	Long-term	1.31	25.9	5		
	ls): Not required						
Higher tier (Ma	mmals): Not required						
Risk from bioa	ccumulation and food chain b	ehaviour ¹					
Indi	cator or focal species	Time scale	e DDD (mg/kg bw per day)	TER	Trigger		
Earthworm-eating	ng birds	Long-term		29.2	5		
Earthworm-eating	ng mammals	Long-term	n 3.24	10.5	5		
Fish-eating bird	s	Long-term	n 0.25	353	5		
Fish-eating man	nmals	Long-term	n 0.22	138	5		
Higher tier : Not required							
Risk from consumption of contaminated water ¹							
Puddle scenario, Screening step							
1)Application rate (375 g a.s./ha)/relevant endpoint <50 (koc<500 L/kg), TER calculation not needed							

¹Covers all proposed uses

Toxicity data for all aquatic tested species (Regulation (EU) N° 283/2013, Annex Part A, points 8.2 and Regulation (EU) N° 284/2013 Annex Part A, point 10.2)

Group	Test substance	Time-scale (Test type)	End point	Toxicity ¹
Laboratory tests				
Fish				
Oncorhynchus mykiss	a.s.	Acute 96 hr (static)	Mortality, LC ₅₀	9.8 mg a.s./L (mm)
Lepomis macrochirus	a.s.	Acute 96 hr (static)	Mortality, LC ₅₀	>13 mg a.s./L (mm)
Cyprinodon variegatus	a.s.	Acute 96 hr (static)	Mortality, LC ₅₀	>14 mg a.s./L (mm)

Evaluator	Month and year	Active substance
HSE	July 2022	Bixlozone (F9600)

Group	Test substance	Time-scale (Test type)	End point	Toxicity ¹
Oncorhynchus mykiss	Preparation 'F9600 4SC'	Acute 96 hr (static)	Mortality, LC ₅₀	32 mg prep./L (nom) (11 mg a.s./L _(mm))
Pimephales promelas	a.s.	Chronic 32 day early life stage (flow- through)	$\mathrm{EC}_{10\ \mathrm{Total}\ \mathrm{length}}$	4.6 mg a.s./L (mm) 7.6 mg a.s./L (mm)
			NOEC Total length	0.38 mg a.s./L (mm)
Aquatic invertebrates				
Daphnia magna	Bixlozone	48 h (static)	Mortality, EC ₅₀	>2.6 mg a.s./L _(mm)
Americamysis bahia	Bixlozone	96 h (static)	LC ₅₀	0.14 mg a.s./L _(mm)
Caecidotea communis	Bixlozone	48 h (static)	Mortality, EC ₅₀	>1.6 mg a.s./L _(mm)
Chironomus riparius	Bixlozone	48 h (static)	Mortality, EC ₅₀	1.9 mg a.s./L _(mm)
Pycnopsyche gentilis	Bixlozone	48 h (static)	Mortality, EC ₅₀	0.33 mg a.s./L _(mm)
Hexagenia limbata	Bixlozone	48 h (static)	Mortality, EC ₅₀	1.5 mg a.s./L _(mm)
Thamnocephalus platyurus	Bixlozone	48 h (static)	Mortality, EC ₅₀	0.11 mg a.s./L _(mm)
Geometric mean endpoint (based on 7 acute studies above)	Bixlozone	-	Mortality, EC ₅₀	0.669 mg a.s./L _(mm)
Daphnia magna	Preparation 'F9600 4SC'	48 h (static)	Mortality, EC ₅₀	61 mg prep./L _(nom) (23 mg a.s./L _(mm))
Americamysis bahia	Preparation 'F9600 4SC'	96 h (static)	LC ₅₀	3.9 mg prep./L _(nom) (1.4 mg a.s./L _(mm))
Americamysis bahia	Bixlozone	28 d (flow- through)	NOEC	0.12 mg a.s./L (mm)
Daphnia magna	2,4- dichlorobenzoic acid	48 h (static)	Mortality, EC50	>100 mg p.m./L (nom)

Evaluator	Month and year	Active substance
HSE	July 2022	Bixlozone (F9600)

Group	Test substance	Time-scale (Test type)	End point	Toxicity ¹
Americamysis bahia	2,4- dichlorobenzoic acid	96 h (static)	LC ₅₀	>100 mg p.m./L (nom)
Daphnia magna	4-Carboxyl- F9600	48 h (static)	Mortality, EC ₅₀	>100 mg p.m./L (nom)
Americamysis bahia	4-Carboxyl- F9600	96 h (static)	LC ₅₀	>100 mg p.m./L (nom)
Daphnia magna	F9600-dimethyl- malonamide	48 h (static)	Mortality, EC ₅₀	>100 mg p.m./L (nom)
Americamysis bahia	F9600-dimethyl- malonamide	96 h (static)	LC ₅₀	100 mg p.m./L (nom)
Americamysis bahia	F9600-3-OH- propanamide	96 h (static)	LC ₅₀	22 mg p.m./L (mm)
Sediment-dwelling organis	sms			
Chironomus riparius	Bixlozone	28 d (static, spiked	EC10, development rate	69 mg a.s./kg sed. dw (mm)
		sediment)		(3.0 mg a.s./L)
			EC20, development rate	150 mg a.s./kg sed. dw _(mm)
				(6.4 mg a.s./L)
			NOEC, development rate	49 mg a.s./kg sed. dw (mm)
				(1.3 mg a.s./L)
Hyalella azteca	Bixlozone	10 d (static, spiked sediment)	EC50 growth, survival	>84 mg a.s./kg sed. dw (mm)
			NOEC growth/survival	84 mg a.s./kg sed. dw (mm)
Chironomus riparius	2,4- dichlorobenzoic acid	28 d (static, spiked sediment)	EC ₁₀	≥ 104.88 mg p.m./kg sed. dw (mm) ≥ (93.26 mg p.m./L)
			NOEC	104.88 mg p.m./kg sed. dw (mm) (93.26 mg p.m./L)

Evaluator	Month and year	Active substance
HSE	July 2022	Bixlozone (F9600)

Group	Test substance	Time-scale (Test type)	End point	Toxicity ¹
Chironomus riparius	4-Carboxyl- F9600	28 d (static, spiked sediment)	EC ₁₀	\geq 494.54 mg p.m./kg sed. dw (mm) (\geq 42.75 mg p.m./L)
			NOEC	494.54 mg p.m./kg sed. dw (mm) (42.75 mg p.m./L)
Chironomus riparius	F9600-dimethyl- malonamide	28 d (static, spiked sediment)	EC10	$\geq 502 \text{ mg}$ p.m./kg sed. dw (ini) ($\geq 89.5 \text{ mg}$ p.m./L)
			NOEC	502 mg p.m./kg sed. dw (ini) (89.5 mg p.m./L)
Algae				p, 2)
Raphidocelis subcapitata	Bixlozone	96 h (static)	72 hours	
			Growth rate: ErC ₅₀	14 mg a.s./L (mm)
			ErC ₂₀	6.7 mg a.s./L (mm)
			ErC ₁₀	4.5 mg a.s./L (mm)
			NOErC	0.92mg a.s./L (mm)
			Yield: E _y C ₅₀	6.5 mg a.s./L
			E_yC_{20}	1.6 mg a.s./L
			E _y C ₁₀	0.76 mg a.s./L
			NOE _y C	(mm) 0.92 mg a.s./L (mm)

Evaluator	Month and year	Active substance
HSE	July 2022	Bixlozone (F9600)

Group	Test substance	Time-scale (Test type)	End point	Toxicity ¹
Raphidocelis subcapitata	Preparation 'F9600 4SC'	96 h (static)	Growth rate: E _r C ₅₀	53/65 mg prep./L (19.29/23.66 mg a.s./L _(nom)) 27/40.9 mg
				prep./L (9.83/14.89 mg a.s./L _(nom))
			ErC10	19/28.2 mg prep./L (6.92/10.26 mg a.s./L _(nom))
			NOErC	13/13 mg prep./L (4.73/4.73 mg a.s./L _(nom))
			Yield: E _y C ₅₀	27/34 mg prep./L (9.83/12.38 mg a.s./L _(nom))
			E _y C ₂₀	16/16.7 mg prep./L (5.82/6.08 mg a.s./L _(nom))
			E_yC_{10}	n.r./12.5 mg prep./L
			NOE _y C	(n.r./4.55 mg a.s./L _(nom)) 13/13 mg prep./L
				(4.73/4.73 mg a.s./L _(nom)) (72 h/96 h)

Evaluator	Month and year	Active substance
HSE	July 2022	Bixlozone (F9600)

Group	Test substance	Time-scale (Test type)	End point	Toxicity ¹
Skeletonema costatum	Preparation	96 h (static)	72 hours	
	'F9600 4SC'		Growth rate: ErC50	17 mg prep./L
				(6.18 mg a.s./L) (mm)
			E_rC_{20}	9.3 mg prep./L (3.38 mg a.s./L) (mm)
			ErC ₁₀	7.5 mg prep./L (2.82 mg a.s./L)
				(mm)
			NOErC	6.1 mg prep./L (2.22 mg a.s./L) (mm)
			Yield: E _y C ₅₀	11 mg prep./L (4.0 mg a.s./L) (mm)
			E_yC_{20}	7.6 mg prep./L (2.76 mg a.s./L) (mm)
			E _y C ₁₀	6.7 mg prep./L(2.44 mg a.s./L) (mm)
			NOE _y C	6.1 mg prep./L (2.22 mg a.s./L) (mm)
Raphidocelis subcapitata	2,4- dichlorobenzoic	96 h (static)	ErC ₅₀	90.1 / 100 mg p.m./L _(nom)
	acid		NOErC	31.3 / 31.3 mg p.m./L _(nom)
			E_yC_{50}	60.6 / 59.9 mg p.m./L _(nom)
			NOE _y C	31.3 / 31.3 mg p.m./L _(nom) (72 hours / 96
				hours)

Evaluator	Month and year	Active substance
HSE	July 2022	Bixlozone (F9600)

Group	Test substance	Time-scale (Test type)	End point	Toxicity ¹
Skeletonema costatum	2,4- dichlorobenzoic acid	96 h (static)	Growth rate: E _r C ₅₀ E _r C ₂₀ E _r C ₁₀ NOE _r C	> 100 / > 100 mg p.m./L (nom) > 100 / > 100 mg p.m./L (nom) > 100 / > 100 mg p.m./L (nom) 31.3 / 31.3 (nom)
			Yield: E_yC_{50} E_yC_{20} E_yC_{10} NOE _y C	> 100 / n.r.mg p.m./L (nom) n.r. / n.r. n.r. / n.r. 31.3 /31.3 (nom) (72 hours / 96 hours)
Raphidocelis subcapitata	4-Carboxyl- F9600	96 h (static)	Growth rate: E_rC_{50} E_rC_{20} E_rC_{10} NOE _r C	77 / 71 mg p.m./L (mm) 63 / 56 mg p.m./L (mm) 56 / 51 mg p.m./L (mm) 24 / 49 mg p.m./L (mm)
			Yield: E _y C ₅₀ E _y C ₂₀ E _y C ₁₀ NOE _y C	62 / 65 mg p.m./L (mm) 49 / 52 mg p.m./L (mm) 42 / 44 mg p.m./L (mm) 24 / 49 mg p.m./L (mm) (72 hours / 96 hours)

Evaluator	r Month and year Active substance	
HSE	July 2022	Bixlozone (F9600)

Group	Test substance	Time-scale (Test type)	End point	Toxicity ¹
Skeletonema costatum	4-Carboxyl- F9600	96 h (static)	Growth rate: ErC ₅₀	86 / > 110 mg p.m./L _(mm)
			E_rC_{20}	59 / 67 mg p.m./L _(mm)
			E_rC_{10}	n.r. / 55 mg p.m./L _(mm)
			NOE _r C	48 / 48 mg p.m./L _(mm)
			Yield: E _y C ₅₀	75 / 83 mg p.m./L _(mm)
			E_yC_{20}	n.r. / 60 mg
			E_yC_{10}	p.m./L (mm)
			NOE _y C	n.r. / n.r. 48 / 48 mg p.m./L (mm) (72 hours / 96 hours)
Raphidocelis subcapitata	F9600-dimethyl- malonamide	96 h (static)	Growth rate: ErC ₅₀	71 / 71 mg p.m./L (mm)
			ErC ₂₀	57 / 56 mg p.m./L _(mm)
			E_rC_{10}	53 / 52 mg p.m./L _(mm)
			NOErC	49 / 49 mg p.m./L _(mm)
			Yield: E _y C ₅₀	69 / 67 mg p.m./L _(mm)
			E _y C ₂₀	56 / 53 mg p.m./L _(mm)
			E_yC_{10}	n.r. / n.r.
			NOE _y C	49 / 49 mg p.m./L _(mm)
				(72 hours / 96 hours)

Evaluator	Month and year	Active substance
HSE	July 2022	Bixlozone (F9600)

Group	Test substance	Time-scale (Test type)	End point	Toxicity ¹
Skeletonema costatum	F9600-dimethyl- malonamide	96 h (static)	Growth rate: ErC ₅₀	> 100 / > 100 mg p.m./L (mm)
			ErC ₂₀	> 100 / > 100 mg p.m./L (mm)
			ErC ₁₀	> 100 / > 100 mg p.m./L (mm)
			NOErC	48 / 48 mg p.m./L _(mm)
			Yield: E _y C ₅₀	> 100 / > 100 mg p.m./L _(mm)
			E_yC_{20}	n.r. / > 100 m.m.
			E _y C ₁₀	51 mg p.m./L _(mm) / n.r.
			NOE _y C	48 / 48 mg p.m./L _(mm)
				(72 hours / 96 hours)
Raphidocelis subcapitata	F9600-3-OH- propanamide	96 h (static)	Growth rate: ErC ₅₀	> 84 / > 84 mg p.m./L (mm)
			E_rC_{20}	$\begin{array}{l} 61 \ / > 84 \ mg \\ p.m./L \ (mm) \end{array}$
			E_rC_{10}	45 / - ^a mg p.m./L _(mm)
			NOErC	33 / 33 mg p.m./L _(mm)
			Yield: E_yC_{50}	63 / 66 mg
			E_yC_{20}	p.m./L _(mm) 43 / - ^a mg
			E_yC_{10}	p.m./L _(mm)
			LyCio	38 / - ^a mg
			NOE _y C	p.m./L (mm)
				33 / 33 mg
				p.m./L (mm)
				(72 hours / 96 hours)

Evaluator	Month and year	Active substance
HSE	July 2022	Bixlozone (F9600)

Group	Test substance	Time-scale (Test type)	End point	Toxicity ¹
Skeletonema costatum	F9600-3-OH- propanamide	96 h (static)	Growth rate: ErC ₅₀	> 85 mg p.m./L (mm)
			E_rC_{20}	47 mg p.m./L (mm)
			E _r C ₁₀ NOE _r C	32 mg p.m./L (mm) 13 (mm)
			Yield: E _y C ₅₀	70 mg p.m./L
			E_yC_{20}	(mm) 30 mg p.m./L (mm)
			E_yC_{10}	16 mg p.m./L (mm)
			NOE _y C	13 mg p.m./L (mm)
II shop alout				(72 hours)
Higher plant Lemna gibba	Bixlozone	7 d (static)	EC	21 mg a a //
Lemna gibba		/ d (static)	E_rC_{50} , frond density E_rC_{20} , frond density	21 mg a.s./L _(mm) 6.5 mg a.s./L _(mm)
			$E_r C_{10, \ frond \ density}$	2.4 mg a.s./L (mm)
			NOErC, frond density	1.6 mg a.s./L (mm)
			$E_y C_{50, frond density}$	84 mg a.s./L (mm)
			$E_y C_{20, frond density}$	2.0 mg a.s./L
			$E_y C_{10, \ frond \ density}$	(mm) 0.67 mg a.s./L (mm)
			NOE _y C, frond density	1.6 mg a.s./L (mm)

Evaluator	Month and year Active substance	
HSE	July 2022	Bixlozone (F9600)

Group	Test substance	Time-scale	End point	Toxicity ¹
		(Test type)		
Myriophyllum spicatum	Bixlozone	14 d (static renewal,	ErC50, shoot length	3.2 mg a.s./L (im)
		water- sediment	ErC20, shoot length	0.033 mg a.s./L
		system dosed via	$E_r C_{10, \text{ shoot length}}$	0.0071 mg a.s./L
		water)	NOE_rC , shoot length	0.0096 mg a.s./L
			$E_y C_{50, \ shoot \ length}$	0.410 mg a.s./L
			$E_y C_{20, \ shoot \ length}$	(im) 0.012 mg a.s./L
			$E_y C_{10, \ shoot \ length}$	(im). 0.0051 mg a.s./L
			NOE_yC , shoot length	(im) 0.0096 mg a.s./L (im)
Lemna gibba	Preparation 'F9600 4SC'	7 d (static renewal	$E_r C_{50 \ frond \ density}$	41.2 mg prep/L (15.0 mg a.s./L
				(mm))
			$E_r C_{20 \ dry \ weight}$	14.8 mg prep/L (5.4 mg a.s./L
			$E_r C_{10 dry weight}$	(mm)) 9.9 mg prep/L (3.6 mg a.s./L
			NOErC	(mm)) 5.5 mg prep/L (2.0 mg a.s./L (mm))
			$E_y C_{50 dry weight}$	(mm)) 16.8 mg prep/L (6.1 mg a.s./L (mm))
			$E_y C_{20 \; dry \; weight}$	8.8 mg prep/L (3.20 mg a.s./L
			$E_y C_{10 \text{ dry weight}}$	(mm)) 7.1 mg prep/L (2.6 mg a.s./L
			NOE _y C	(mm)) 5.5 mg prep/L (2.0 mg a.s./L
				(mm))

Evaluator	Month and year	Active substance
HSE	July 2022	Bixlozone (F9600)

Group	Test substance	Time-scale (Test type)	End point	Toxicity ¹
Myriophyllum spicatum	Preparation 'F9600 4SC'	14 d (static renewal, water-	ErC50 shoot length	7.4 mg prep/L (2.69 mg a.s./L (im))
		sediment system dosed via	$E_r C_{20 \ shoot \ wet \ weight}$	2.9 mg prep/L (1.1 mg a.s./L _(im))
		water)	$E_r C_{10}$ shoot wet weight	(im)) 0.16 mg prep/L (0.061 mg a.s./L (im))
			$E_y C_{50 \ shoot \ length}$	5.8 mg prep/L (2.11 mg a.s./L (im))
			$E_y C_{20}$ shoot wet weight	(im)) 0.20 mg prep/L (0.073 mg a.s./L (im))
			$E_y C_{10}$ shoot wet weight	0.097 mg prep/L (0.035 mg a.s./L (im))
			NOEC, phytoxic effects	<0.27 mg prep/L (<0.01 mg a.s./L (im))
Myriophyllum spicatum	2,4- dichlorobenzoic	14 d (static renewal,	$E_r C_{50, \ shoot \ length}$	24 mg p.m./L
	acid	water- sediment system	$E_r C_{20, \ shoot \ length}$	4.3 mg p.m./L (mm).
		dosed via water)	$E_r C_{10, \ shoot \ length}$	1.1 mg p.m./L
		water)	NOE_rC , shoot length	(mm) 0.92 mg p.m./L (mm)
			$E_y C_{50, \ shoot \ length}$	11 mg p.m./L (mm)
			$E_y C_{20, \text{ shoot length}}$	$3 \text{ mg p.m./L}_{(mm)}$
			$E_y C_{10, \text{ shoot length}}$	1.1 mg p.m./L
			NOE_yC , shoot length	3.3 mg p.m./L (mm)
Myriophyllum spicatum	4-Carboxyl- F9600	14 d (static renewal, water-	$E_r C_{50, shoot length}$	>1.30 mg p.m./L* _(mm)
		sediment system dosed via water)	NOErC, shoot length	1.3 mg p.m./L (mm)
			NOE_yC , shoot length	1.3 mg p.m./L

Evaluator	Month and year	Active substance
HSE	July 2022	Bixlozone (F9600)

Section 5 Ecotoxicology

Group	Test substance	Time-scale	End point	Toxicity ¹
		(Test type)		
Myriophyllum spicatum	F9600-dimethyl- malonamide	14 d (static renewal, water- sediment system dosed via water)	$E_rC_{50, shoot wet weight}$ $E_rC_{20, shoot wet weight}$ $E_rC_{10, shoot wet weight}$ $NOE_rC, shoot wet weight$ $E_yC_{50, plant dry weight}$ $E_yC_{20, plant dry weight}$ $E_yC_{10, plant dry weight}$ $NOE_yC, shoot dry weight}$	<pre>> 100 mg p.m./L (nom) 17.9 mg p.m./L (nom) 6.09 mg p.m./L (nom) 3.05 mg p.m./L (nom) 38.7 mg p.m./L (nom) 5.69 mg p.m./L (nom) n.r. 3.05 mg p.m./L (nom)</pre>

Further testing on aquatic organisms

In addition to *D.magna* and *A.bahia*, seven further acute aquatic invertebrate studies were conducted in order to refine the Tier 1 RAC. However the studies conducted with *B.calyciflorus* and *G.fasciatus* were considered unreliable. Removing both *B.calyciflorus* and *G.fasciatus* results in insufficient data points for an SSD; therefore only a geomean can be derived from the remaining data points. This results in a **geomean RAC of 6.69 µg a.s./L**, **based on a geomean of 669 µg a.s./L** and an assessment factor of 100.

Potential endocrine disrupting properties (Annex Part A, point 8.2.3)

Overall, HSE concludes that based on current EFSA/ECHA 2018 guidance that bixlozone does not meet the criteria of being an endocrine disruptor (ED) for aquatic organisms when considering EAS and T modalities. Some uncertainties were identified by HSE in regard to study design, however, HSE still considers that bixlozone is not an endocrine disruptor for aquatic organisms when considering the EAS and T modalities. These conclusions are based on EFSA/ECHA 2018 guidance.

¹ n.r. = not reported; nom. = nominal concentration; mm. = mean measured concentration; im = initial measured concentration; p.m = pure metabolite; a.s. = active substance; prep = preparation

Bold indicates endpoints used in risk assessment

*corrected endpoint – highest endpoint with < 50% effects and without the presence of foaming/precipitate/turbidity in the test solutions. Given precipitate was noted in the stock and 31.3 mg/L solution, and turbidity at 9.77 mg/L, it is deemed more appropriate to derive an E_rC_{50} of >1.3 mg/L (mean measured).

In accordance to the EFSA Aquatic Guidance Document (EFSA 2013), only the EC₅₀ values determined for the more relevant endpoint 'growth rate' (E_rC_{50}) are considered for the risk assessment for aquatic primary producers if both "growth rate" and "yield / biomass" endpoints are available – apart from Kirkwood 2015b and 2017 where the E_rC_{20} has been used as a precaution due to the difference in endpoints based on yield and growth rate and the phytotoxic and morphological effects.

Evaluator	Month and year	Active substance
HSE	July 2022	Bixlozone (F9600)

Section 5 Ecotoxicology

Bioconcentration in fish (Annex Part A, point 8.2.2.3)

	Active substance	Metabolite1	Metabolite2	Metabolite3
logP _{O/W}	3.3	-	-	-
Steady-state bioconcentration factor (BCF) (total wet weight/normalised to 5% lipid content)	77.5*	-	-	-
Uptake/depuration kinetics BCF (total wet weight/normalised to 5% lipid content)	-	-	-	-
Annex VI Trigger for the bioconcentration factor	-	-	-	-
Clearance time (days) (CT ₅₀)	-	-	-	-
(CT ₉₀)	-	-	-	-
Level and nature of residues (%) in organisms after the 14 day depuration phase	-	-	-	-
Higher tier study				
Not required				

* based on total ¹⁴C or on specific compounds

Evaluator	Month and year	Active substance
HSE	July 2022	Bixlozone (F9600)

Section 5 Ecotoxicology

PEC/RAC ratios for the most sensitive aquatic organisms (Regulation (EU) N° 284/2013, Annex Part A, point 10.2)

Tier 1 PEC/RAC ratios for Bixlozone in maize at 1 x 375 g a.s./ha

Scenario	PEC (µg/L)	Fish acute	Fish long-term	Aquatic	Aquatic	Algae	Higher plant	Sediment
				invertebrates	invertebrates long-term			dwelling invertebrate
		O. mykiss	P. promelas	A. bahia	A. bahia	R. subcapitata	M. spicatum	C. riparius
		RAC (LC ₅₀)	RAC (NOEC)	RAC (LC ₅₀)	RAC (NOEC)	RAC (E_rC_{50})	RAC (ErC ₂₀)	RAC (NOEC)
		98 μg/L	38 µg/L	1.4 µg/L	12 µg/L	1400 µg/L	<mark>3.3</mark> μg/L	6900 μg/kg sed. dw
Spraydrift (1 m)	3.463 (3.687) ^a	0.035	0.09	2.474	0.289	0.002	1.05	0.0005
Drainflow	20.192 (21.500)	0.206	0.53	14.423	1.683	0.014	<mark>6.12</mark>	0.003

^a PEC values in parentheses are sediment exposure concentrations expressed as $\mu g/kg$ sed. dw; they have been used for risk assessment of the sediment dwelling invertebrates Values in **bold** are above the trigger of 1

Tier 1 PEC/RAC ratios for Bixlozone in winter oilseed rape at 1 x 300 g a.s./ha

Scenario	PEC (µg/L)	Fish acute	Fish long-term	Aquatic invertebrates	Aquatic invertebrates long-term	Algae	Higher plant	Sediment dwelling invertebrate
		O. mykiss	P. promelas	A. bahia	A. bahia	R. subcapitata	M. spicatum	C. riparius
		RAC (LC ₅₀)	RAC (NOEC)	RAC (LC ₅₀)	RAC (NOEC)	RAC (E_rC_{50})	RAC (ErC ₂₀)	RAC (NOEC)
		98 μg/L	38 µg/L	1.4 μg/L	12 μg/L	1400 µg/L	<mark>3.3</mark> μg/L	6900
								µg/kg sed. dw
Spraydrift (1 m)	2.770 (2.949) ^a	0.028	0.073	1.979	0.231	0.002	0.84	0.0004
Drainflow	16.154 (17.200)	0.165	0.425	11.539	1.346	0.012	<mark>4.895</mark>	0.002

^a PEC values in parentheses are sediment exposure concentrations expressed as $\mu g/kg$ sed. dw; they have been used for risk assessment of the sediment dwelling invertebrates Values in **bold** are above the trigger of 1

Evaluator	Month and year	Active substance
HSE	July 2022	Bixlozone (F9600)

Section 5 Ecotoxicology

Tier 1 PEC/RAC ratios for Bixlozone in winter cereals at 1 x 200 g a.s./ha

Scenario	PEC (µg/L)	Fish acute	Fish long-term	Aquatic invertebrates	Aquatic invertebrates long-term	Algae	Higher plant	Sediment dwelling invertebrate
		O. mykiss	P. promelas	A. bahia	A. bahia	R. subcapitata	M. spicatum	C. riparius
		RAC (LC ₅₀)	RAC (NOEC)	RAC (LC ₅₀)	RAC (NOEC)	RAC (E_rC_{50})	RAC (ErC ₂₀)	RAC (NOEC)
		98 μg/L	38 µg/L	1.4 µg/L	12 µg/L	1400 µg/L	<mark>3.3</mark> μg/L	6900
								μg/kg sed. dw
Spraydrift (1 m)	1.847 (1.966) ^a	0.019	0.049	1.319	0.154	0.001	<mark>0.56</mark>	0.0002
Drainflow	10.769 (11.467)	0.110	0.283	7.692	0.897	0.008	3.26	0.002

^a PEC values in parentheses are sediment exposure concentrations expressed as $\mu g/kg$ sed. dw; they have been used for risk assessment of the sediment dwelling invertebrates Values in **bold** are above the trigger of 1

Tier 2 PEC/RAC ratios for Bixlozone in maize at 1 x 375 g a.s./ha

Scenario	PEC (µg/L)	Aquatic invertebrates acute	Aquatic invertebrates long-term	Aquatic plants
		7 aquatic invertebrate endpoints (without	A. bahia	M. spicatum
		B.calyciflorus and G.fasciatus)		
		Geomean RAC	RAC (NOEC)	RAC
		6.69 µg/L	12 µg/L	<mark>3.3 μg/L</mark>
Spraydrift (1 m)	3.463	0.512	0.289	1.049
Spraydrift (5 m)	0.888	0.133	0.074	0.269
Drainflow	20.192	3.02	1.683	<mark>6.12</mark>

Values in **bold** are above the trigger of 1

Tier 2 PEC/RAC ratios for Bixlozone in winter oilseed rape at 1 x 300 g a.s./ha

Scenario	PEC	Aquatic invertebrates acute	Aquatic invertebrates long-term	Aquatic plants
	(µg/L)	7 aquatic invertebrate endpoints	A. bahia	M. spicatum
		(without B.calyciflorus and		
		G.fasciatus)		
		Geomean RAC	RAC (NOEC)	RAC
		6.69 μg/L	12 µg/L	3.3 μg/L

Evaluator	Month and year	Active substance
HSE	July 2022	Bixlozone (F9600)

Section 5 Ecotoxicology

Spraydrift (1 m)	2.770	0.414	0.231	0.839
Drainflow	16.154	2.42	1.35	4.895

Values in **bold** are above the trigger of 1

Tier 2 PEC/RAC ratios for Bixlozone in winter cereals at 1 x 200 g a.s./ha

Scenario	PEC (µg/L)	Aquatic invertebrates acute	Aquatic invertebrates long-term	Aquatic plants
		7 aquatic invertebrate endpoints	A. bahia	M. spicatum
		(without B.calyciflorus and		
		G.fasciatus)		
		Geomean RAC	RAC (NOEC)	RAC
		6.69 μg/L	12 µg/L	3.3 μg/L
Spraydrift (1 m)	1.847	0.276	0.154	0.56
Drainflow	10.769	1.61	0.897	3.263

Values in **bold** are above the trigger of 1

Metabolites of Bixlozone

Tier 1 PEC/RAC ratios for 2,4-dichlorobenzoic acid in maize at 1 x 375 g a.s./ha

Scenario	PEC (µg/L)	Fish acute	Fish long-term	Aquatic invertebrates	Aquatic invertebrates long-term	Algae	Higher plant	Sediment dwelling invertebrate
		Parental toxicity	Parental toxicity	A. bahia	Parental toxicity	R. subcapitata	M. spicatum	C. riparius
		RAC (LC ₅₀)	RAC (NOEC)	RAC (LC ₅₀)	RAC (NOEC)	RAC (E_rC_{50})	RAC (E_rC_{50})	RAC (NOEC)
		98 μg/L	38 µg/L	$>10000 \ \mu g/L$	12 μg/L	9010 µg/L	2400 μg/L	10488 μg/kg sed. dw
Spraydrift (1 m)	0.732 (0.355) ^a	0.007	0.019	< 0.001	0.061	< 0.001	< 0.001	< 0.001
Drainflow	38.146 (176.06)	0.389	1.00	0.004	3.179	0.004	0.016	0.02
Groundwater	2.787	0.028	0.073	0.000	0.232	< 0.001	0.001	-

Evaluator	Month and year	Active substance
HSE	July 2022	Bixlozone (F9600)

Section 5 Ecotoxicology

^a PEC values in parentheses are sediment exposure concentrations expressed as μ g/kg sed. dw; they have been used for risk assessment of the sediment dwelling invertebrates Values in **bold** exceed the PEC/RAC of 1 and further consideration is required

Tier 1 PEC/RAC ratios for 2,4-dichlorobenzoic acid in winter oilseed rape at 1 x 300 g a.s./ha

Scenario	PEC (µg/L)	Fish acute	Fish long-term	Aquatic invertebrates	Aquatic invertebrates long-term	Algae	Higher plant	Sediment dwelling invertebrate
		Parental toxicity	Parental toxicity	A. bahia	Parental toxicity	R. subcapitata	M. spicatum	C. riparius
		RAC (LC ₅₀)	RAC (NOEC)	RAC (LC ₅₀)	RAC (NOEC)	RAC (E_rC_{50})	RAC (E_rC_{50})	RAC (NOEC)
		98 μg/L	38 µg/L	$> 10000 \mu g/L$	12 µg/L	9010 µg/L	2400 µg/L	10488 μg/kg sed. dw
Spraydrift (1 m)	0.586 (0.284) ^a	0.006	0.015	< 0.001	0.048	< 0.001	< 0.001	< 0.001
Drainflow	30.546 (140.98)	0.312	0.804	0.003	2.546	0.003	0.013	0.01
Groundwater	4.048	0.041	0.009	< 0.001	0.337	< 0.001	0.002	

^a PEC values in parentheses are sediment exposure concentrations expressed as $\mu g/kg$ sed. dw; they have been used for risk assessment of the sediment dwelling invertebrates Values in **bold** exceed the PEC/RAC of 1 and further consideration is required

Tier 1 PEC/RAC ratios for 2,4-dichlorobenzoic acid in winter cereals at 1 x 200 g a.s./ha

Scenario	PEC (µg/L)	Fish acute	Fish long-term	Aquatic invertebrates	Aquatic invertebrates long-term	Algae	Higher plant	Sediment dwelling invertebrate
		Parental toxicity	Parental toxicity	A. bahia	Parental toxicity	R. subcapitata	M. spicatum	C. riparius
		RAC (LC ₅₀)	RAC (NOEC)	RAC (LC ₅₀)	RAC (NOEC)	RAC (E_rC_{50})	RAC $(E_r C_{50})$	RAC (NOEC)
		98 μg/L	38 µg/L	$> 10000 \mu g/L$	12 µg/L	9010 µg/L	2400 µg/L	10488 μg/kg sed. dw
Spraydrift (1 m)	0.391 (0.189) ^a	0.004	0.010	0.000	0.033	< 0.001	< 0.001	< 0.001
Drainflow	20.315 (93.763)	0.207	0.535	0.002	1.693	0.002	0.008	0.008

Evaluator	Month and year	Active substance
HSE	July 2022	Bixlozone (F9600)

Section 5 Ecotoxicology

Groundwater	2 599	0.027	0.001	< 0.001	0.217	0<0.001	0.001	
Oroundwater	2.577	0.021	0.001	(0:001	0.217	0 (0:001	0.001	

^a PEC values in parentheses are sediment exposure concentrations expressed as $\mu g/kg$ sed. dw; they have been used for risk assessment of the sediment dwelling invertebrates Values in **bold** exceed the PEC/RAC of 1 and further consideration is required

Evaluator	Month and year	Active substance
HSE	July 2022	Bixlozone (F9600)

Section 5 Ecotoxicology

Tier 1 PEC/RAC ratios for 4-Carboxyl-F9600 in maize at 1 x 375 g a.s./ha

Scenario	PEC (µg/L)	Fish acute	Fish long-term	Aquatic invertebrates	Aquatic invertebrates long-term	Algae	Higher plant	Sediment dwelling invertebrate
		Parental toxicity	Parental toxicity	A. bahia	Parental toxicity	R. subcapitata	M. spicatum	C. riparius
		RAC (LC ₅₀)	RAC (NOEC)	RAC (LC ₅₀)	RAC (NOEC)	RAC (E_rC_{50})	RAC (E_rC_{50})	RAC (NOEC)
		98 μg/L	38 μg/L	$> 10000 \ \mu g/L$	12 μg/L	7100 µg/L	>130 µg/L	49454 μg/kg sed. dw
Spraydrift (1 m)	0.676 (0.214)	0.007	0.018	< 0.001	0.056	< 0.001	0.005	< 0.001
Drainflow	3.942 (7.081)	0.040	0.104	< 0.001	0.329	0.001	0.030	< 0.001

^a PEC values in parentheses are sediment exposure concentrations expressed as µg/kg sed. dw; they have been used for risk assessment of the sediment dwelling invertebrates

Tier 1 PEC/RAC ratios for 4-Carboxyl-F9600 in winter oilseed rape at 1 x 300 g a.s./ha

Scenario	PEC (µg/L)	Fish acute	Fish long-term	Aquatic invertebrates	Aquatic invertebrates long-term	Algae	Higher plant	Sediment dwelling invertebrate
		Parental toxicity	Parental toxicity	A. bahia	Parental toxicity	R. subcapitata	M. spicatum	C. riparius
		RAC (LC ₅₀)	RAC (NOEC)	RAC (LC ₅₀)	RAC (NOEC)	RAC (ErC ₅₀)	RAC (ErC ₅₀)	RAC (NOEC)
		98 μg/L	38 µg/L	$> 10000 \ \mu g/L$	12 µg/L	7100 µg/L	>130 µg/L	49454 μg/kg sed. dw
Spraydrift (1 m)	0.541 (0.171)	0.006	0.014	< 0.001	0.045	< 0.001	0.004	< 0.001
Drainflow	3.154 (5.665)	0.032	0.083	< 0.001	0.263	< 0.001	0.024	< 0.001

Evaluator	Month and year	Active substance
HSE	July 2022	Bixlozone (F9600)

Section 5 Ecotoxicology

Tier 1 PEC/RAC ratios for 4-Carboxyl-F9600 in winter cereals at 1 x 200 g a.s./ha

Scenario	PEC (µg/L)	Fish acute	Fish long-term	Aquatic invertebrates	Aquatic invertebrates long-term	Algae	Higher plant	Sediment dwelling invertebrate
		Parental toxicity	Parental toxicity	A. bahia	Parental toxicity	R. subcapitata	M. spicatum	C. riparius
		RAC (LC ₅₀)	RAC (NOEC)	RAC (LC ₅₀)	RAC (NOEC)	RAC (E_rC_{50})	RAC (E_rC_{50})	RAC (NOEC)
		98 µg/L	38 µg/L	$> 10000 \ \mu g/L$	12 μg/L	7100 µg/L	>130 µg/L	49454 μg/kg sed. dw
Spraydrift (1 m)	0.360 (0.114)	0.004	0.009	< 0.001	0.030	< 0.001	0.003	< 0.001
Drainflow	2.102 (3.776)	0.021	0.055	< 0.001	0.175	< 0.001	0.016	< 0.001

Evaluator	Month and year	Active substance
HSE	July 2022	Bixlozone (F9600)

Section 5 Ecotoxicology

Tier 1 PEC/RAC ratios for F9600-dimethyl-malonamide in maize at 1 x 375 g a.s./ha

Scenario	PEC (µg/L)	Fish acute	Fish long-term	Aquatic invertebrates	Aquatic invertebrates long-term	Algae	Higher plant	Sediment dwelling invertebrate
		Parental toxicity	Parental toxicity	A. bahia	Parental toxicity	R. subcapitata	M. spicatum	C. riparius
		RAC (LC ₅₀)	RAC (NOEC)	RAC (LC ₅₀)	RAC (NOEC)	RAC (E_rC_{50})	RAC (E_rC_{50})	RAC (NOEC)
		98 µg/L	38 µg/L	$> 10000 \mu g/L$	12 µg/L	7100 µg/L	$> 10000 \ \mu g/L$	50200
								µg/kg sed. dw
Spraydrift (1 m)	0.453 (0.119)	0.005	0.012	< 0.001	0.038	< 0.001	< 0.001	< 0.001
Drainflow	2.641 (5.622)	0.027	0.070	< 0.001	0.220	< 0.001	< 0.001	< 0.001

^a PEC values in parentheses are sediment exposure concentrations expressed as µg/kg sed. dw; they have been used for risk assessment of the sediment dwelling invertebrates

Tier 1 PEC/RAC ratios for F9600-dimethyl-malonamide in winter oilseed rape at 1 x 300 g a.s./ha

Scenario	PEC (µg/L)	Fish acute	Fish long-term	Aquatic	Aquatic	Algae	Higher plant	Sediment
				invertebrates	invertebrates			dwelling
					long-term			invertebrate
		Parental	Parental	A. bahia	Parental	R. subcapitata	M. spicatum	C. riparius
		toxicity	toxicity		toxicity			
		RAC (LC ₅₀)	RAC (NOEC)	RAC (LC ₅₀)	RAC (NOEC)	RAC (E_rC_{50})	RAC (E_rC_{50})	RAC (NOEC)
		98 µg/L	38 µg/L	$> 10000 \mu g/L$	12 µg/L	7100 µg/L	$> 10000 \mu g/L$	50200
								µg/kg sed. dw
Spraydrift (1 m)	0.362 (0.095)	0.004	0.010	< 0.001	0.030	< 0.001	< 0.001	< 0.001
Drainflow	2.113 (4.498)	0.022	0.056	< 0.001	0.176	< 0.001	< 0.001	< 0.001

Evaluator	Month and year	Active substance
HSE	July 2022	Bixlozone (F9600)

Section 5 Ecotoxicology

Tier 1 PEC/RAC ratios for F9600-dimethyl-malonamide in winter cereals at 1 x 200 g a.s./ha

Scenario	PEC (µg/L)	Fish acute	Fish long-term	Aquatic invertebrates	Aquatic invertebrates long-term	Algae	Higher plant	Sediment dwelling invertebrate
		Parental toxicity	Parental toxicity	A. bahia	Parental toxicity	R. subcapitata	M. spicatum	C. riparius
		RAC (LC ₅₀)	RAC (NOEC)	RAC (LC ₅₀)	RAC (NOEC)	RAC (E_rC_{50})	RAC (E_rC_{50})	RAC (NOEC)
		98 µg/L	38 µg/L	$>10000 \ \mu g/L$	12 µg/L	7100 µg/L	$> 10000 \ \mu g/L$	50200 μg/kg sed. dw
Spraydrift (1 m)	0.242 (0.064)	0.002	0.006	< 0.001	0.020	< 0.001	< 0.001	< 0.001
Drainflow	1.409 (2.998)	0.014	0.037	< 0.001	0.117	< 0.001	< 0.001	< 0.001

Evaluator	Month and year	Active substance
HSE	July 2022	Bixlozone (F9600)

Section 5 Ecotoxicology

Tier 1 PEC/RAC ratios for F9600-3-OH-propanamide in maize at 1 x 375 g a.s./ha

Scenario	PEC (µg/L)	Fish acute	Fish long-term	Aquatic invertebrates	Aquatic invertebrates	Algae	Higher plant	Sediment dwelling
				invertebrates	long-term			invertebrate
		Parental	Parental	A. bahia	Parental	R. subcapitata	Parental	Parental
		toxicity	toxicity		toxicity		toxicity	toxicity
		RAC (LC ₅₀)	RAC (NOEC)	RAC (LC ₅₀)	RAC (NOEC)	RAC (E_rC_{50})	RAC (E_rC_{20})	RAC (NOEC)
		98 µg/L	38 µg/L	2200 µg/L	12 μg/L	$> 8400 \mu g/L$	3. <mark>3</mark> μg/L	6900
								µg/kg sed. dw
Spraydrift (1 m)	0.126 (0.057)	0.001	0.003	< 0.001	0.011	< 0.001	0.038	< 0.001
Drainflow	0.730 (9.312)	0.007	0.019	< 0.001	0.061	< 0.001	0.22	< 0.001

^a PEC values in parentheses are sediment exposure concentrations expressed as µg/kg sed. dw; they have been used for risk assessment of the sediment dwelling invertebrates

Tier 1 PEC/RAC ratios for F9600-3-OH-propanamide in winter oilseed rape at 1 x 300 g a.s./ha

Scenario	PEC (µg/L)	Fish acute	Fish long-term	Aquatic	Aquatic	Algae	Higher plant	Sediment
				invertebrates	invertebrates			dwelling
					long-term			invertebrate
		Parental	Parental	A. bahia	Parental	R. subcapitata	Parental.	Parental.
		toxicity	toxicity		toxicity		toxicity	toxicity
		RAC (LC ₅₀)	RAC (NOEC)	RAC (LC ₅₀)	RAC (NOEC)	RAC (E_rC_{50})	RAC $(E_r C_{20})$	RAC (NOEC)
		98 µg/L	38 µg/L	2200 µg/L	12 µg/L	$> 8400 \mu g/L$	3. <mark>3</mark> μg/L	6900
								µg/kg sed. dw
Spraydrift (1 m)	0.100 (0.046)	0.001	0.003	< 0.001	0.008	< 0.001	0.03	< 0.001
Drainflow	0.584 (7.450)	0.006	0.015	< 0.001	0.049	< 0.001	0.18	< 0.001

Evaluator	Month and year	Active substance
HSE	July 2022	Bixlozone (F9600)

Section 5 Ecotoxicology

Tier 1 PEC/RAC ratios for F9600-3-OH-propanamide in winter cereals at 1 x 200 g a.s./ha

Scenario	PEC (µg/L)	Fish acute	Fish long-term	Aquatic invertebrates	Aquatic invertebrates long-term	Algae	Higher plant	Sediment dwelling invertebrate
		Parental toxicity	Parental toxicity	A. bahia	Parental toxicity	R. subcapitata	Parental. toxicity	Parental toxicity
		RAC (LC ₅₀)	RAC (NOEC)	RAC (LC ₅₀)	RAC (NOEC)	RAC (ErC ₅₀)	RAC (ErC ₂₀)	RAC (NOEC)
		98 µg/L	38 µg/L	2200 µg/L	12 µg/L	$> 8400 \ \mu g/L$	3. <mark>3</mark> μg/L	6900 μg/kg sed. dw
Spraydrift (1 m)	0.066 (0.030)	< 0.001	0.0017	< 0.001	0.006	< 0.001	0.02	< 0.001
Drainflow	0.389 (4.966)	0.004	0.010	< 0.001	0.032	< 0.001	0.12	< 0.001

^a PEC values in parentheses are sediment exposure concentrations expressed as µg/kg sed. dw; they have been used for risk assessment of the sediment dwelling invertebrates

Higher tier drainflow modelling

Higher tier drainflow modelling (HTDF) was carried out by HSE Environmental Fate and Behaviour in section 3CP B8.5.2.2. The modelling uses the RAC of $3.3 \mu g/L$ based on aquatic plants for bixlozone and the RAC of $12 \mu g/L$ based on aquatic invertebrates for the metabolite 2,4-DBA. Combined higher tier drainflow has also been assessed using the Finney equation (based on annual maximum PEC_{sw} and, where necessary, daily PEC_{sw}). As the bixlozone and 2,4-DBA RACs come from different aquatic groups (i.e. bixlozone from aquatic plants and 2,4-DBA from aquatic invertebrates), the CA has undertaken separate combined risk assessments considering the relevant RAC in each group. For aquatic plants, this corresponds to $3.3 \mu g/L$ for bixlozone and 2400 $\mu g/L$ for 2,4-DBA. For aquatic invertebrates, the relevant RAC values are 6.69 $\mu g/L$ for bixlozone and 12 $\mu g/L$ for 2,4-DBA.

As the total number of years with bixlozone RAC exceedances were ≤ 18 (the threshold for acceptability for aquatic plants) and the overall weighted level of exceedance 'safe years' were $\geq 90\%$, an acceptable HTDF was obtained for the maize, winter oilseed rape and winter cereals GAP for bixlozone. Similarly, as the total number of years with 2,4-DBA RAC exceedances were ≤ 3 (the threshold for acceptability for aquatic invertebrates) and the overall weighted level of exceedance 'safe years' were $\geq 90\%$, an acceptable HTDF was also obtained for the maize, winter oilseed rape and winter cereals GAPs for 2,4-DBA. As the total number of years where the aquatic plant RACs were exceeded were ≤ 18 and the aquatic invertebrate RACs were ≤ 3 , and in both instances the weighted level of exceedances 'safe years' were $\geq 90\%$, acceptable combined HTDF assessments were obtained for the maize, winter oilseed rape and winter cereals GAPs. Therefore an acceptable risk to aquatic organisms for all proposed GAPs can be concluded.

Evaluator	Month and year	Active substance
HSE	July 2022	Bixlozone (F9600)

Section 5 Ecotoxicology

Representative formulation 'F9600 4SC'

Tier 1 PEC/RAC ratios for 'F9600 4SC' in maize at 1 x 375 g a.s./ha

Scenario	PEC (µg/L)	Fish acute	Aquatic invertebrates		Algae	Higher plant
		O. mykiss	D. magna	A. bahia	S. costatum	M. spicatum
		RAC (LC ₅₀)	RAC (LC ₅₀)	RAC (LC ₅₀)	RAC	RAC (E_rC_{20})
		320 µg/L	610 µg/L	39 µg/L	1700	<mark>29</mark> 0 μg/L
Spraydrift (1 m)	9.704	0.030	0.016	0.249	0.006	0.0 <mark>3</mark> 3

Tier 1 PEC/RAC ratios for 'F9600 4SC' in winter oilseed rape at 1 x 300 g a.s./ha

Scenario	PEC (µg/L)	Fish acute	Aquatic invertebra	Aquatic invertebrates		Higher plant
		O. mykiss	D. magna	A. bahia	S. costatum	M. spicatum
		RAC (LC ₅₀)	RAC (LC ₅₀)	RAC (LC ₅₀)	RAC	RAC $(E_r C_{20})$
		320 µg/L	610 µg/L	39 µg/L	1700	<mark>29</mark> 0 μg/L
Spraydrift (1 m)	7.765	0.024	0.013	0.199	0.005	0.027

Tier 1 PEC/RAC ratios for 'F9600 4SC' in winter cereals at 1 x 200 g a.s./ha

Scenario	PEC (µg/L)	Fish acute	Aquatic invertebrates		Algae	Higher plant
		O. mykiss	D. magna	A. bahia	S. costatum	M. spicatum
		RAC (LC ₅₀)	RAC (LC ₅₀)	RAC (LC_{50})	RAC	RAC (E_rC_{20})
		320 µg/L	610 µg/L	39 µg/L	1700	<mark>29</mark> 0 μg/L
Spraydrift (1 m)	5.180	0.016	0.008	0.133	< 0.003	0.0 <mark>18</mark>

Evaluator	Month and year	Active substance	
HSE	July 2022	Bixlozone (F9600)	

Section 5 Ecotoxicology

Effects on bees (Regulation (EU) N° 283/2013, Annex Part A, point 8.3.1 and Regulation (EU) N° 284/2013 Annex Part A, point 10.3.1)*

* This section does reflect the new EFSA Guidance Document on bees which has not yet been noted by the Standing Committee on Plants, Animals, Food and Feed.

Species	Test substance	Time scale/type of endpoint	End point	toxicity
Apis mellifera	Bixlozone	Acute	Oral toxicity (LD ₅₀)	> 100 µg a.s./bee
			Contact toxicity (LD ₅₀)	> 100 µg a.s./bee
Bombus terrestris	Bixlozone	Acute	Oral toxicity (LD ₅₀)	> 1000 µg a.s./bee
			Contact toxicity (LD ₅₀)	> 1000 µg a.s./bee
Osmia bicornis	Bixlozone	Acute	Oral toxicity (LD ₅₀)	\geq 462 µg a.s./bee
			Contact toxicity (LD ₅₀)	> 600 µg a.s./bee
Apis mellifera	Preparation 'F9600 4SC'	Acute	Oral toxicity (LD ₅₀)	> 111.1 µg a.s./bee
			Contact toxicity (LD ₅₀)	> 100 µg a.s./bee
Apis mellifera	Bixlozone	Chronic	10 d-LD ₅₀	> 9.475 µg a.s./bee/day
			10 d-LD ₁₀	> 9.475 µg a.s./bee/day
			NOED	9.475 µg a.s./bee/day
Apis mellifera	Bixlozone	Bee brood development	22 d-ED _{10,} emergence	5.9 µg a.s./larva
			22 d-NOED _{larvae}	6.3 μg a.s./larva
Apis mellifera	Bixlozone	Sub-lethal effects (behavioural and reproductive)	NOEC hypopharyngeal glands	No data

 Potential for accumulative toxicity:

 Semi-field test (Cage and tunnel test)

 None submitted.

 Field tests

 None submitted.

Evaluator	Month and year	Active substance	
HSE	July 2022	Bixlozone (F9600)	1

Section 5 Ecotoxicology

Risk assessment for – maize at 375 g a.s./ha [x 1 application] ^a

Species	Test substance	Risk quotient	HQ/ETR	Trigger
Apis mellifera	Bixlozone	HQcontact	< 3.75	> 50
		HQoral	< 3.75	
Apis mellifera	Preparation	HQcontact	< 3.38	> 50
	'F9600 4SC'	HQoral	< 3.75	
-	a.s.	ETRacute adult oral	-	-
-	a.s.	ETRchronic adult oral	-	-
-	a.s.	ETRlarvae	-	-
-	a.s.	ETRhpg	-	-

^a The risk assessment for this use addresses all other representative uses (i.e. winter cereals (1 x 200 g a.s./ha) and winter oilseed rape (1 x 300 g a.s./ha)). The same conclusions apply in all cases.

Effects on other arthropod species (Regulation (EU) N° 283/2013, Annex Part A, point 8.3.2 and Regulation (EU) N° 284/2013 Annex Part A, point 10.3.2)

Laboratory tests with standard sensitive species

Species	Test Substance	End point	Toxicity
Typhlodromus pyri	Preparation 'F9600 4SC'	Mortality, LR ₅₀	97.4 g a.s./ha
Aphidius rhopalosiphi	Preparation 'F9600 4SC'	Mortality, LR ₅₀	\geq 344 g a.s./ha ^a
Additional species	·	•	
None			

^a The modelled LR₅₀ was greater than the maximum treatment concentration, this extrapolated value was not considered suitable for use in risk assessment. However, to account for the observed results the lower 95 % confidence limit has been used as a conservative endpoint for the risk assessment. Though it is noted that there is uncertainty over the true endpoint.

First tier risk assessment for – winter cereals at 200 g a.s./ha [x 1 application]

Test substance	Species	Effect (LR ₅₀ g /ha)	HQ in-field	HQ off-field	Trigger
'F9600 4SC'	Typhlodromus pyri	97.4	2.05	- ^a	≥2
	Aphidius rhopalosiphi	≥ 344	≤ 0.58	_ a	≥2

^a Addressed by risk assessment for the use on maize, see below, the same conclusion applies.

Evaluator	Month and year	Active substance
HSE	July 2022	Bixlozone (F9600)

Section 5 Ecotoxicology

First tier risk assessment for – winter oilseed rape at 300 g a.s./ha [x 1 application]

Test substance	Species	Effect (LR ₅₀ g/ha)	HQ in-field	HQ off-field	Trigger
'F9600 4SC'	Typhlodromus pyri	97.4	3.08	_ a	≥2
	Aphidius rhopalosiphi	≥ 344	≤ 0.87	_ a	≥2

^a Addressed by risk assessment for the use on maize, see below, the same conclusion applies.

First tier risk assessment for – maize at 375 g a.s./ha [x 1 application]

Test substance	Species	Effect (LR ₅₀ g/ha)	HQ in-field	HQ off-field	Trigger
'F9600 4SC'	Typhlodromus pyri	97.4	3.85	0.11 (1m)	≥2
	Aphidius rhopalosiphi	≥ 344	≤ 1.09	\leq 0.03 (1m)	≥2

Extended laboratory tests, aged residue tests

Species	Life stage	Test substance, substrate	Time scale	Dose (g a.s./ha)	End point	% effect	ER ₅₀
Typhlodromus pyri	Adult	'F9600 4SC', vine leaves (2D)	7 days	Control 45.7 91.6 183 367 489 (ini)	Mortality ¹	13 (-) 30 (19.2) 25 (13.5) 30 (19.2) 38 (28.8) 77 (73.1) (LD ₅₀ = 473 g a.s./ha)	473
			14 days	Control 45.7 91.6 183 367 489 (ini)	Reproduction ²	- -18.5 4.2 14.3 43.5 n.d.	≥ 367
Chrysoperla carnea	Larvae	'F9600 4SC', vine leaves (2D)	21 days	Control 45.7 91.6 183 367 489 (ini)	Mortality ¹	10.0 (-) 13 (2.8) 20 (11.1) 23 (13.9) 13 (2.8) 7.5 (-2.8)	> 489

 Evaluator	Month and year	Active substance
HSE	July 2022	Bixlozone (F9600)

Section 5 Ecotoxicology

Species	Life stage	Test substance, substrate	Time scale	Dose (g a.s./ha)	End point	% effect	ER ₅₀
				Control 45.7 91.6 183 367 489 (ini)	Reproduction 3	17.9 (92.9) 15.8 (94.9) 15.3 (89.6) 20.3 (88.7) 15.4 (95.1) 15.0 (91.7)	_ 3

ini = initial residues; n.d. = not determined

¹ Values indicate absolute mortality, values in parentheses indicate mortaility corrected for control mortaility

² Negative values indicate an increase compared to the control, positive values indicate a decrease

³ Reproduction in terms of eggs/female/day outside parentheses. Inside parentheses the larval hatching rate (%) is reported. Where the eggs/female/day is \geq 15 and the hatching rate is > 70 % no adverse reproductive effects are concluded according to the study guideline (Vogt *et al.*, 2000).

Risk assessment for – winter cereals at 200 g a.s./ha [x 1 application] based on extended lab test

Species	ER ₅₀ (g/ha)	In-field rate	Off-field rate
Typhlodromus pyri	≥ 367	200	n.r.
Chrysoperla carnea	> 489		

n.r. = not required, risk resolved at first tier

Risk assessment for – winter oilsed rape at 300 g a.s./ha [x 1 application] based on extended lab test

Species	ER ₅₀ (g/ha)	In-field rate	Off-field rate
Typhlodromus pyri	≥ 367	300	n.r.
Chrysoperla carnea	> 489		

n.r. = not required, risk resolved at first tier

Risk assessment for – maize at 375 g a.s./ha [x 1 application] based on extended lab test

Species	ER ₅₀ (g/ha)	In-field rate	Off-field rate
Typhlodromus pyri	≥ 367	375 ^a	n.r.
Chrysoperla carnea	> 489		

n.r. = not required, risk resolved at first tier

^a Risk unresolved as the *T. pyri* ER₅₀ is potentially below the maximum in-field rate

An acceptable in-field risk could be concluded for an application rate to maize of \leq 367 g a.s./ha (as < 50% effects were reported at this concentration).

Semi-field tests
None submitted.
Field studies
None submitted.
Additional specific test

Evaluator	Month and year	Active substance
HSE	July 2022	Bixlozone (F9600)

Section 5 Ecotoxicology

None submitted.		

Effects on non-target soil meso- and macro fauna; effects on soil nitrogen transformation (Regulation (EU) N° 283/2013, Annex Part A, points 8.4, 8.5, and Regulation (EU) N° 284/2013 Annex Part A, points 10.4, 10.5)

Test organism	Test substance	Application method of test a.s./ OM ¹	Time scale	End point	Toxicity
Earthworms			·		
Eisenia fetida	Bixlozone ^a	Incorporated with quartz sand and mixed with soil / 5 %	Chronic	NOEC(mortality) NOEC(mortality) _{corr} ^b	200 mg a.s./kg soil dw 100 mg a.s./kg soil dw
				NOEC(body weight) NOEC(body weight) _{corr} ^b	400 mg a.s./kg soil dw 200 mg a.s./kg soil dw
				NOEC(reproduction) NOEC(reproduction) _{corr} ^b	100 mg a.s./kg soil dw 50 mg/kg soil dw
Eisenia fetida	Preparation F9600-4 SC ^{a,c}	Incorporated with quartz sand and mixed with soil / 5 %	Chronic	NOEC(mortality) NOEC(mortality) _{corr} ^b	160mg F9600- 4/kg soil dw (58.2 mg a.s./kg soil dw) 80 mg F9600- 4/kg soil dw (29.1 mg a.s./kg soil dw)
				NOEC(body weight) NOEC(body weight) _{corr} ^b	80 mg F9600- 4/kg soil dw (29.1 mg a.s./kg soil dw) 40 mg F9600- 4/kg soil dw (14.55 mg a.s./kg soil dw)
				NOEC(reproduction) NOEC(reproduction) _{corr} ^b	80 mg F9600- 4/kg soil dw (29.1 mg a.s./kg soil dw) 40 mg F9600- 4/kg soil dw (14.55 mg a.s./kg soil dw)

Evaluator	Month and year	Active substance
HSE	July 2022	Bixlozone (F9600)

Test organism	Test substance	Application method of test a.s./ OM ¹	Time scale	End point	Toxicity
Eisenia fetida	2,4- dichlorobenzoic acid	Incorporated with quartz sand and mixed with soil / 5 %	Chronic	NOEC(mortality) NOEC(mortality) _{corr} ^b	340 mg/kg soil dw 170 mg/kg soil dw 612 mg/kg soil dw 306 mg/kg soil dw
				NOEC(body weight) NOEC(body weight) _{corr} ^b	58.3 mg/kg soil dw _d 29.15 mg/kg soil dw
				NOEC(reproduction) NOEC(reproduction) _{corr} ^b EC ₅₀	112 mg/kg soil dw (95% confidence limits: 89.2 – 136 mg/kg soil dw)
				EC _{50corr} ^b	106 mg/kg soil dw 76.9 mg/kg soil dw (95%
				${{\rm EC}_{20}} {{\rm EC}_{20{\rm corr}^{\rm b}}}$	confidence limits: 32.7 – 98.4 mg/kg soil dw) 38.45 mg/kg soil dw
				EC_{10} EC_{10corr}^{b}	61.6 mg/kg soil dw (95% confidence limits: 16.3 – 84.9 mg/kg soil dw) 30.8 mg/kg
Other soil m	acroorganisms				30.8 mg/kg soil dw

Evaluator	Month and year	Active substance
HSE	July 2022	Bixlozone (F9600)

Section 5 Ecotoxicology

Test organism	Test substance	Application method of test a.s./ OM ¹	Time scale	End point	Toxicity
Folsomia candida	Preparation F9600-4 SC ^{a,c}	Mixed with soil as a solution / 5 %	Chronic	NOEC(mortality) NOEC(mortality)corr ^b	250 mg F9600- 4/kg soil dw (90 mg a.s./kg soil dw) 125 mg F9600- 4 SC/kg soil dw (45 mg a.s./kg soil dw)
				NOEC(reproduction) NOEC(reproduction)corr ^b	62.5 mg F9600-4 SC/kg soil dw (22.5 mg a.s./kg soil dw) ^d 31.25 mg F9600-4 SC/kg soil dw (11.25 mg a.s./kg soil dw) ^e
Hypoaspis aculeifer	Preparation F9600-4 SC ^{a,c}	Mixed with soil as a solution / 5 %	Chronic	NOEC(mortality) NOEC(mortality)corr ^b	1000 mg F9600-4/kg soil dw (360 mg a.s./kg soil dw) 500 mg F9600- 4/kg soil dw (180 mg a.s./kg soil dw)
				NOEC(reproduction) NOEC(reproduction)corr ^b	250 mg F9600- 4/kg soil dw (90 mg a.s./kg soil dw) 125 mg F9600-4 SC/kg soil dw (45 mg a.s./kg soil dw)

¹To indicate whether the test substance was oversprayed/to indicate the organic content of the test soil (e.g. 5 % or 10 %). Endpoints highlighted in **bold** were used in the risk assessment

In accordance with the outcome of the EFSA (2015) pesticides peer review meeting on general recurring issues in ecotoxicology, the lower between the median EC_{10} and the NOEC will be used in the risk assessment, when reliable.

^a It was not possible to calculate meaningful EC_{10} , EC_{20} and EC_{50} values for reproduction due to the distribution of the data and the number of concentrations used. Therefore, the NOEC will be used in the risk assessment.

^b Corrected value derived by dividing the endpoint by a factor of 2 in accordance with the EPPO earthworm scheme 2002.

^c Formulation contained 36.4% w/w active substance, corresponding to 400 g/L; density 1.2 g/mL

Evaluator	Month and year	Active substance
HSE	July 2022	Bixlozone (F9600)

Section 5 Ecotoxicology

^d It is noted that the study authors proposed a NOEC_(reproduction) of 105 mg/kg soil dw for 2,4-dichlorobenzoic acid, however, at this concentration a 34.3% reduction in juvenile number was observed. As such, the CA considers that the NOEC should be set at the lower test concentration of 58.3 mg/kg soil dw (29.15 mg/kg soil dw_{corr}) at which there was no reduction in reproductive output (-4% in comparison to the control group).

^e The study authors have proposed a NOEC for reproduction of 125 mg F9600-4 SC/kg soil dw, however, at this concentration there was a 15% reduction in comparison to the control, in addition this appears to be part of a dose-response relationship. As such, the CA considers that the NOEC should be set at the lower concentration of 62.5 mg/kg soil dw (31.25 mg/kg soil dw_{corr}) at which there was a 7% reduction.

Higher tier testing (e.g. modelling or field studies): None.

Nitrogen transformation	Bixlozone	28 d	No effect >25% at 1000mg/kg soil dw
Nitrogen transformation	Preparation 'F9600-4SC' ^a	28 d	No effect at 1.51 mg F9600-4/kg soil dw (375 g a.s./ha) and 7.55 mg F9600-4/kg soil dw (1875 g a.s./ha)
Nitrogen transformation	2,4-Dichlorobenzoic acid	28 d	No effect >25% at .357 mg/kg soil dw and 1.79 mg/kg soil dw

^a Formulation contained 36.4% w/w active substance, corresponding to 400 g/L

Endpoints highlighted in \boldsymbol{bold} used in the risk assessment

Toxicity/exposure ratios for soil organisms

Maize at 375 g a.s./ha [x 1]

Test organism	Test substance	Time scale	Soil PEC ¹	TER	Trigger
Earthworms	Earthworms				
Eisenia fetida	Bixlozone	Chronic	0.780	64.1	5
Eisenia fetida	2,4- dichlorobenzoic acid	Chronic	0.544	53.6	5
Eisenia fetida	Preparation 'F9600-4 SC'	Chronic	1.402 ^e	28.5	5
Other soil macroorganism	ms				
Folsomia candida	Bixlozone ^c	Chronic	0.780	14.4	5
Folsomia candida	2,4- dichlorobenzoic acid ^d	Chronic	0.544	2.1	5
Folsomia candida	2,4- dichlorobenzoic acid ^d	Chronic	0.349 ^f	3.2	5
Folsomia candida	Preparation 'F9600-4 SC'	Chronic	1.402 ^e	22.3	5
Hypoaspis aculeifer	Bixlozone ^c	Chronic	0.780	57.7	5
Hypoaspis aculeifer	2,4- dichlorobenzoic acid ^d	Chronic	0.544	8.3	5

Evaluator	Month and year	Active substance
HSE	July 2022	Bixlozone (F9600)

Section 5 Ecotoxicology

Test organism	Test substance	Time scale	Soil PEC ¹	TER	Trigger
Hypoaspis aculeifer	Preparation 'F9600-4 SC'	Chronic	1.402 ^e	89.2	5

¹ The maximum PEC_{accumulation} value for bixlozone and maximum PEC_{initial} values for 2,4-dichlorobenzoic acid and bixlozone-4 SC (Section 3CP B.8), have been used in the risk assessment.

 c In the absence of toxicity data with the technical a.s., the formulation data have been expressed in terms of the a.s. content and used alongside the a.s. PEC_{soil} in the risk assessment.

^d In the absence of toxicity data with the metabolite 2,4-dichlorobenzoic acid, the it has been assumed in the risk assessment that the metabolite is 10x more toxic than the parent.

^e mg formulation/kg dw.

^f Refined value for 2,4-dichlorobenzoic acid , please refer to 3CP B.8.

Winter oilseed rape at 300 g a.s./ha [x 1]

Test organism	Test substance	Time scale	Soil PEC ¹	TER	Trigger
Earthworms					
Eisenia fetida	Bixlozone	Chronic	0.780	80.1	5
Eisenia fetida	2,4- dichlorobenzoic acid	Chronic	0.544	67.0	5
Eisenia fetida	Preparation 'F9600-4 SC'	Chronic	1.402 ^e	35.7	5
Other soil macroorganis	ms				
Folsomia candida	Bixlozone ^c	Chronic	0.780	18.0	5
Folsomia candida	2,4- dichlorobenzoic acid ^d	Chronic	0.544	2.6	5
Folsomia candida	2,4- dichlorobenzoic acid ^d	Chronic	0.349 ^f	4.0	5
Folsomia candida	Preparation 'F9600-4 SC'	Chronic	1.402 ^e	27.9	5
Hypoaspis aculeifer	Bixlozone ^c	Chronic	0.780	72.1	5
Hypoaspis aculeifer	2,4- dichlorobenzoic acid ^d	Chronic	0.544	10.3	5
Hypoaspis aculeifer	Preparation 'F9600-4 SC'	Chronic	1.402 ^e	112	5

¹ The maximum PEC_{accumulation} value for bixlozone and maximum PEC_{initial} values for 2,4-dichlorobenzoic acid and bixlozone-4 SC (Section 3CP B.8), have been used in the risk assessment.

 c In the absence of toxicity data with the technical a.s., the formulation data have been expressed in terms of the a.s. content and used alongside the a.s. PEC_{soil} in the risk assessment.

^d In the absence of toxicity data with the metabolite 2,4-dichlorobenzoic acid, the it has been assumed in the risk assessment that the metabolite is 10x more toxic than the parent.

^e mg formulation/kg dw.

^f Refined value for 2,4-dichlorobenzoic acid , please refer to 3CP B.8.

Evaluator	Month and year	Active substance	
HSE	July 2022	Bixlozone (F9600)	

Section 5 Ecotoxicology

Winter cereals at 200 g a.s./ha [x 1]

Test organism	Test substance	Time scale	Soil PEC ¹	TER	Trigger
Earthworms	Earthworms				
Eisenia fetida	Bixlozone	Chronic	0.780	120	5
Eisenia fetida	2,4- dichlorobenzoic acid	Chronic	0.544	100	5
Eisenia fetida	Preparation 'F9600-4 SC'	Chronic	1.402	53.5	5
Other soil macroorganis	ms				
Folsomia candida	Bixlozone ^c	Chronic	0.780	27.0	5
Folsomia candida	2,4- dichlorobenzoic acid ^d	Chronic	0.544	3.9	5
Folsomia candida	2,4- dichlorobenzoic acid ^d	Chronic	0.349 ^f	6.0	5
Folsomia candida	Preparation 'F9600-4 SC'	Chronic	1.402 ^e	41.8	5
Hypoaspis aculeifer	Bixlozone ^c	Chronic	0.780	108	5
Hypoaspis aculeifer	2,4- dichlorobenzoic acid ^d	Chronic	0.544	15.5	5
Hypoaspis aculeifer	Preparation 'F9600-4 SC'	Chronic	1.402 ^e	167	5

¹ The maximum PEC_{accumulation} value for bixlozone and maximum PEC_{initial} values for 2,4-dichlorobenzoic acid and bixlozone-4 SC (Section 3CP B.8), have been used in the risk assessment.

 c In the absence of toxicity data with the technical a.s., the formulation data have been expressed in terms of the a.s. content and used alongside the a.s. PEC_{soil} in the risk assessment.

^d In the absence of toxicity data with the metabolite 2,4-dichlorobenzoic acid, the it has been assumed in the risk assessment that the metabolite is 10x more toxic than the parent.

^e mg formulation/kg dw.

^f Refined value for 2,4-dichlorobenzoic acid , please refer to 3CP B.8.

Maize at 375 g a.s./ha [x 1]

Test organism	Test substance	Timescale	No effect >25% (mg/kg dw)	PEC _{soil} (mg/kg dw) ¹	Risk acceptable?
Nitrogen	Bixlozone	28 d	1000	0.780	Yes
transformation	2,4-dichlorobenzoic acid	28 d	1.79	0.544	Yes
	Preparation 'F9600-4 SC'	28 d	7.55ª	1.402ª	Yes

¹The maximum PEC_{accumulation} value for bixlozone and maximum PEC_{initial} values for 2,4-dichlorobenzoic acid and bixlozone-4 SC (Section 3CP B.8), have been used in the risk assessment.

^a mg formulation/kg dw

Evaluator	Month and year	Active substance	
HSE	July 2022	Bixlozone (F9600)	

Section 5 Ecotoxicology

Winter oilseed rape at 300 g a.s./ha [x 1]

Test organism	Test substance	Timescale	No effect >25% (mg/kg dw)	PEC _{soil} (mg/kg dw) ¹	Risk acceptable?
Nitrogen	Bixlozone	28 d	1000	0.624	Yes
transformation	2,4-dichlorobenzoic acid	28 d	1.79	0.435	Yes
	Preparation 'F9600-4 SC'	28 d	7.55ª	1.121ª	Yes

^aThe maximum PEC_{accumulation} value for bixlozone and maximum PEC_{initial} values for 2,4-dichlorobenzoic acid and bixlozone-4 SC (Section 3CP B.8), have been used in the risk assessment.

^a mg formulation/kg dw

Winter cereals at 200 g a.s./ha [x 1]

Test organism	Test substance	Timescale	No effect >25% (mg/kg dw)	PEC _{soil} (mg/kg dw) ¹	Risk acceptable?
Nitrogen	Bixlozone	28 d	1000	0.416	Yes
transformation	2,4-dichlorobenzoic acid	28 d	1.79	0.290	Yes
	Preparation 'F9600-4 SC'	28 d	7.55ª	0.748ª	Yes

¹The maximum PEC_{accumulation} value for bixlozone and maximum PEC_{initial} values for 2,4-dichlorobenzoic acid and bixlozone-4 SC (Section 3CP B.8), have been used in the risk assessment.

^a mg formulation/kg dw

Effects on terrestrial non target higher plants (Regulation (EU) N° 283/2013, Annex Part A, point 8.6 and Regulation (EU) N° 284/2013 Annex Part A, point 10.6)

Not required for herbicides or plant growth regulators as ER ₅₀ tests should be provided						
Laboratory dose res	sponse tests				•	
Species	Test substance	ER ₅₀ (g a.s./ha) vegetative vigour	ER ₅₀ (g a.s./ha) emergence	Exposure ¹ (g a.s./ha)	TER	Trigger
	Risk assessmer	nt for – winter cer	eals at 200 g a.s.	/ha [x 1 applica	ation]	
Lycopersicon esculentum	Preparation 'F9600 4SC'	-	19	5.54 (1m)	3.4	< 5
Allium cepa	Preparation 'F9600 4SC'	99.8 (1.5 ^a)	-	5.54 (1m)	18.0 (0.27 ^a)	< 5
	Risk assessment f	or – winter oilsee	ed rape at 300 g a	.s./ha [x 1 app]	lication]	
Lycopersicon esculentum	Preparation 'F9600 4SC'	-	19	8.31 (1m)	2.3	< 5
Allium cepa	Preparation 'F9600 4SC'	99.8 (1.5 ^a)	-	8.31 (1m)	12.0 (0.18 ^a)	< 5
	Risk assessment for – maize at 375 g a.s./ha [x 1 application]					

Evaluator	Month and year	Active substance
HSE	July 2022	Bixlozone (F9600)

Section 5 Ecotoxicology

Species	Test substance	ER ₅₀ (g a.s./ha) vegetative vigour	ER ₅₀ (g a.s./ha) emergence	Exposure ¹ (g a.s./ha)	TER	Trigger
Lycopersicon esculentum	Preparation 'F9600 4SC'	-	19	10.39 (1m)	1.8	< 5
Allium cepa	Preparation 'F9600 4SC'	99.8 (1.5 ^a)	-	10.39 (1m)	9.6 (0.14 ^a)	< 5

^{*a*} Screen to account for other morphological/phytotoxic effects observed in the vegetative vigour study.

Extended laboratory studies: None submitted.

Semi-field and field test: A wind tunnel study (Staffa, 2016) was submitted to address exposure via volatilisation. A summary, in relation to the ecotoxicological risk assessment, is included in Volume 3, Section B.9.12.2.2 (PPP). The study was suitable for use in risk assessment and has been used to establish exposure estimates for plants exposed via volatilisation. The lower-tier toxicity data has been used to establish a toxicological endpoint for use in risk assessment. The risk from volatilisation has been considered based on the following risk assessment:

Use/crop (application rate)	Distance (m)	Deposition (%)	PER _{volatilisation} (g a.s./ha)	Toxicity value (g a.s./ha)	TER (criterion: TER ≥ 5)
Winter cereals	1	0.42	0.84	1.5	1.8
(200 g a.s./ha)	5	0.14	0.28		5.4
Oilseed rape (300 g a.s./ha)	1	0.42	1.26		1.2
	5	0.14	0.42		3.6
	10	0.08	0.24		6.3
Maize	1	0.42	1.58		0.95
(375 g a.s./ha)	5	0.14	0.53		2.8
	10	0.08	0.30		5

MAF: Multiple application factor; $PER_{volatilisation}$: Predicted environmental rate, due to volatilisation (= application rate x (deposition(%)/100)); TER: toxicity to exposure ratio. TER values shown in bold are below the relevant trigger and an acceptable risk has not been demonstrated.

¹Exposure has been calculated using Ganzelmeier drift data, buffer distances are stated in parentheses

^a Screen to account for other morphological/phytotoxic effects observed in the vegetative vigour study.

Effects on biological methods for sewage treatment (Regulation (EU) N° 283/2013, Annex Part	
A, point 8.8)	

Test type/organism	end point
Activated sludge	NOEC (Total respiration) = 100 mg/L NOEC (Heterotrophic Respiration) = 1000 mg/L NOEC (Nitrification Respiration) = 100 mg/L EC ₁₀ (Total respiration) = 291 (104 – 820) mg/L EC ₁₀ (Heterotrophic Respiration) = n.d. (considered to be > 1000 mg/L)
	EC_{10} (Nitrification Respiration) = 140 (51-382) mg/L

Evaluator	Month and year	Active substance
HSE	July 2022	Bixlozone (F9600)

Section 5 Ecotoxicology

Monitoring data (Regulation (EU) N° 283/2013, Annex Part A, point 8.9 and Regulation (EU) N° 284/2013, Annex Part A, point 10.8)

Available monitoring data concerning adverse effect of the a.s.

Available monitoring data concerning effect of the PPP.

Definition of the residue for monitoring (Regulation (EU) N° 283/2013, Annex Part A, point 7.4.2) Ecotoxicologically relevant compounds¹

Compartment	
soil	Parent (Bixlozone), Metabolite 1 (2,4-dichlorobenzoic acid)
water	Parent (Bixlozone), Metabolite 1 (2,4-dichlorobenzoic acid)
sediment	Parent (Bixlozone)
groundwater	Parent (Bixlozone)

¹ metabolites are considered relevant when, based on the risk assessment, they pose a risk comparable or higher than the parent

Evaluator	Month and year	Active substance
HSE	July 2022	Bixlozone (F9600)

Section 5 Ecotoxicology

Classification and labelling with regard to ecotoxicological data (Regulation (EU) N° 283/2013, Annex Part A, Section 10)

Substance	Bixlozone
Harmonised classification according to Regulation (EC) No 1272/2008 and its Adaptations to Technical Process [Table 3.1 of Annex VI of Regulation (EC) No 1272/2008 as amended] ⁸ :	Draft assessment not complete.
Peer review proposal ⁹ for harmonised classification according to Regulation (EC) No 1272/2008:	Aquatic Acute 1; H400: Very toxic to aquatic life. Acute M-Factor of 1
	Aquatic Chronic 1; H410: Very toxic to aquatic life with long lasting effects.
	Chronic M-Factor of 10

⁸ Regulation (EC) No 1272/2008 of the European Parliament and of the Council of 16 December 2008 on classification, labelling and packaging of substances and mixtures, amending and repealing Directives 67/548/EEC and 1999/45/EC, and amending Regulation (EC) No 1907/2006. OJ L 353, 31.12.2008, 1-1355.

⁹ It should be noted that harmonised classification and labelling is formally proposed and decided in accordance with Regulation (EC) No 1272/2008. Proposals for classification made in the context of the evaluation procedure under Regulation (EC) No 1107/2009 are not formal proposals.

Evaluator	Month and year	Active substance
HSE	July 2022	Bixlozone (F9600)

Used compounds code(s)

Code/Trivial name(s)*	IUPAC name/SMILES notation	Structural formula
F9600/ Bixlozone	2-[(2,4-dichlorophenyl)methyl]-4,4- dimethyl-1,2-oxazolidin-3-one	
M118/1 2,2-dimethyl-3- hydroxypropionic acid	2,2-dimethyl-3-hydroxypropionic acid	ОН
M190/1 2,4-DBA 2,4-dichlorobenzoic acid	2,4-dichlorobenzoic acid	HOCI
M289/1 5-hydroxy-bixlozone 5-hydroxy-F9600	2-(2,4-dichlorobenzyl)-5-hydroxy-4,4- dimethylisoxazolidin-3-one	
M289/3 5'-hydroxy-bixlozone 5'-OH-F9600 5'-hydroxy-F9600	2-(2,4-dichloro-5-hydroxy benzyl)-4,4- dimethylisoxazolidin-3-one	
M261/1 Bixlozone-hydroxy- isobutyramide Bixlozone-OH- isobutyramide F9600-hydroxy- Isobutyramide, also termed bixlozone (F9600)-dimethyl-	N-(2,4-dichlorobenzyl)-2-hydroxy-2- methylpropanamide	

Evaluator	Month and year	Active substance
HSE	July 2022	Bixlozone (F9600)

Code/Trivial name(s)*	IUPAC name/SMILES notation	Structural formula
isobutyramide		
M289/2 Bixlozone-dimethyl- malonamide (in residues section) F9600-dimethyl- malonamide (in ecotox section)	3-((2,4-dichlorobenzyl)amino)-2,2- dimethyl-3-oxopropanoic acid	
M132/1 Dimethyl malonic acid	2,2-Dimethylmalonic acid	осон
M289/4 4-OH-Me-bixlozone 4-hydroxymethyl- bixlozone 4-hydroxy-methyl-F9600	2-(2,4-dichlorobenzyl)-4-(hydroxymethyl)- 4-methylisoxazolidin-3-one	
M275/1 Bixlozone-3-OH- Propanamide (in residues section) F9600-3-OH- Propanamide (in ecotox section)	N-[(2,4-dichlorophenyl)methyl]-3-hydroxy- 2,2-dimethylpropanamide	
F9600-3-OH- propanamide Bixlozone-3-OH- propanamide 3-OH-propanamide	F9600-3-OH-propanamide	H ₃ C H ₃ C HO

Evaluator	Month and year	Active substance
HSE	July 2022	Bixlozone (F9600)

Code/Trivial name(s)*	IUPAC name/SMILES notation	Structural formula
M355/1 Bixlozone-3-OH- propanamide-sulfate F9600-3-OH- propanamide-sulfate	F9600-3-OH-propanamide-sulfate	
 4-carboxy-bixlozone (in fate section) 4-carboxyl-F9600 (in ecotox section) 	2-(2,4-dichlorobenzyl)-4-methyl-3- oxoisoxazolidine-4-carboxylic acid	
5-Keto-hydrate	3-((2,4-dichlorobenzyl)(hydroxy)amino)- 2,2-dimethyl-3-oxopropanoic acid	
2,4-Dichloroippuric acid	N-(2,4-dichlorobenzoyl)glycine	
Carbamic acid	Carbamic acid	
5-hydroxy-bixlozone- glucuronide5-OH-F9600-Glucuronide	2-(2,4-dichlorobenzyl)-4,4-dimethyl-3- oxoisoxazolidin-5-yl 3,4,5,6- tetrahydroxytetrahydro-2H-pyran-2- carboxylate	H ₃ C H ₃ C Gu O

* The compound code / trivial name in bold is the name used in the list of endpoints.