CHEMICAL SAFETY REPORT

Part B section 9 and 10

Legal name of applicant(s):	AB Connectors Ltd.
Submitted by:	AB Connectors Ltd.
Date:	30 th March 2025
Substance:	Hexavalent Chromium
Use title:	Industrial application of a mixture with hexavalent chromium compounds (chromium trioxide) for the surface treatment of mechanical parts, electrical connectors and associated components meeting the relevant standards and requirements for challenging environments and / or high safety applications.
Use Number:	Use 1

	_			L
C	or	nte	n	[S]
\sim	<u> </u>			

9. Exposure Assessment (and related risk characterisation) 4
9.1 Introduction4
9.1.1 Overview of uses and exposure scenarios4
9.1.2 Introduction to the assessment
9.2 Exposure Scenario 1 for Workers 20
9.2.1 Environmental Contributing Scenario 1
9.2.2 Worker Contributing Scenario 1 (WCS 1) Initial Make Up of Solution
9.2.3 Worker Contributing Scenario 2 (WCS 2) Dipping Connector Parts into Passivate 30
9.2.4 Worker Contributing Scenario 3 (WCS 3) Sampling Vat for Analysis
9.2.5 Worker Contributing Scenario 4 (WCS 4) Lab Analysis
9.2.6 Worker Contributing Scenario 5 (WCS 5) Decanting of Chemicals
9.2.7 Worker Contributing Scenario 6 (WCS 6) Making Additions to Vat Based on Analysis 37
9.2.8 Worker Contributing Scenario 7 (WCS 7) Dipping Parts into Rinse Water After
Passivation
9.2.9 Worker Contributing Scenario 8 (WCS 8) Drying Components
9.2.10 Worker Contributing Scenario 9 (WCS 9) Discharge of Waste Solution
9.2.11 Worker Contributing Scenario 10 (WCS 10) Operators in Work Area Not Associated with Chrome Passivate Process
9.3 Exposure Scenario 2 for Consumers:
10 Risk Characterisation Related to Combined Exposure
10.1 Human health (related to combined, shift-long exposure)
10.1.1 Workers
10.1.2 Exposure Estimations for Workers
10.1.3 Comparison Between Modelling and Monitoring
10.1.4 Risk Characterisation
10.1.5 Analysis of uncertainties and improvement of management
11 References
Annex
Annex I Advanced Reach Tool (ART) Reports
Annex I.I ART Report - Initial Make Up of Solution
Annex I.II ART Report - Dipping Connector Parts into Passivate
Annex I.III ART Report - Sampling Vat for Analysis
Annex I.IV ART Report - Lab Analysis
Annex I.V ART Report - Decanting of Chemical

Annex I.VI ART Report - Making Additions to Vat Based on Analysis (Maintenance)	3
Annex I.VII ART Report - Dipping Parts into Rinse Water After Passivation	5
Annex I.VIII ART Report - Drying of Components	57
Annex I.IX ART Report - Discharge of Waste Solution	9
Annex I.X ART Report - Operators in Work Area Not Associated with Chrome Passivate	
Process	'1
nnex II Technical Data Sheets – Personal Protective Equipment	'3
Annex II.I 3M™ Maintenance-Free Reusable Half Mask	'3
Annex II.II 3M™ Specialty Respirators 99007	'5
Annex II.III Polysol Chemical Resistant Glove	'9
Annex II.IV Microflex-93-260 Chemical Resistant Gloves	0
nnex III LEV Test Results (Survey October 2024)	32

9. Exposure Assessment (and related risk characterisation)

9.1 Introduction

AB Connectors Ltd. is a downstream user of #1 and #2 which contain Hexavalent Chromium. Through the process the substance name changes based on its situation. For clarity, as a raw material it may be referred to as chromium trioxide, if it is diluted in water, it may be referred to as chromic acid and if it is mixed with additional substances, it may be referred to as hexavalent chromium.

This substance is used in conversion coating and passivation of circular and rectangular connectors manufactured at AB Connectors Ltd. site in Abercynon, South Wales. The process is carried out at room temperature that is not electrolytic and does not produce hydrogen or mists. Therefor the likelihood of inhalation is low meaning the exposure risk is very low.

The environmental exposure assessment and risk characterisation has been performed in accordance with the relevant guidance for the production of a Chemical Safety Report (CSR) under the REACH Regulation considering the specific aspects relating to the use of the substance.

Surveillance programs of the processes, including maintenance operations, are performed at the Abercynon site. Emergency procedures are in place in case of accidental release, malfunctioning of ventilation or other accidental events.

Workers involved in the activities using this substance are specifically trained and made aware of the specific hazards. Health surveillance programs are in place in order to ensure the complete safety of each worker. The vats containing hexavalent chromium is located in a restricted area where only qualified workers are allowed.

9.1.1 Overview of uses and exposure scenarios

AB Connectors Ltd.'s Authorisation and the Exposure Scenario described covers the activities at the Abercynon site.

Identified Use ID	Identified Use Description	Exposure Scenario
Use 1	Industrial application of a mixture with	ES1: Industrial use
	hexavalent chromium compounds (chromium	of hexavalent
	trioxide) for the surface treatment of	chromium in bath
	mechanical parts, electrical connectors and	for the surface
	associated components meeting the relevant	treatment of
	standards and requirements for challenging	connectors
	environments and/or high safety applications.	

Table 1: Identified Uses and Exposure Scenarios

9.1.1.1 Process Explanation

This Chemical Safety Report (CSR) discusses the use of hexavalent chromium in a vat for the surface treatment of connectors.

Parts for electroplating are cleaned of oil in an automated aqueous wash system in the Machining area, before being passed to the Plating Department.

The "Electroplating Processes" referenced in the above, refer to the Nickel Plating and Zinc Cobalt plating applied to the aluminium base parts prior to the passivation process.

The Chromium Trioxide based passivation is a Non-Electrolytic process, which forms a complex zinc/chromate compound on the surface of the zinc plated layer to provide the colour (e.g. black, olive green) and to enhance the corrosion protection of the zinc and nickel plating.

There is no Chrome Electroplating carried out at AB Connectors Ltd.

We only use Chromium Trioxide for the passivation of connectors.

Each batch of components will have a "Batch Card" which will identify the component, and the plating finish required

Figure 1: Components prepared for plating

There is no direct inhalation exposure to hexavalent chromium during this task.

• Wiring

To prepare the parts for plating they are wired onto frames (jigs) using copper wire. The number of components per frame is determined by the surface area of the parts to maintain a standard load for the plating process. The wired jigs are placed on a trolley awaiting plating.

<u>This task is considered in the estimation of exposure to hexavalent chromium. It is</u> treated in this CSR in the Worker Contributing Scenario 10 (WCS 10).

• Plating

The plating line consists of approximately 33 vats containing various chemicals used as part of the plating process.

Pretreatment – Alkaline cleaners and Acids

Plating Tanks

Post Treatment – Passivates

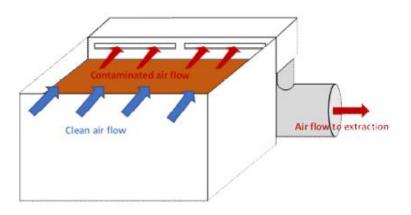
It is a fully automated process consisting of a computer processor which controls the movement of 3 robotic transporter arms which carry the parts for plating between the various process tanks.

Figure 2: Automated plating process

The processor contains specific chemical process sequences which determine the tanks used and the immersion times for each process (as well as solution temperatures, dwell times over tanks etc)



Figure 3: Automated plating processor


The operator loads up to four jigs onto a flight bar then inputs a "process sequence name" into the computer.

The transporter then lifts the bar from the "load / unload" station and takes it through various chemical processes as determined by the process sequence. When the plating process is complete the transporter returns back towards the "load / unload station" where excess water is removed from the components using an air gun before they are placed in an oven to dry at 60C. When the drying is complete the parts are lowered into the load station where the jigs are removed and placed on a trolley ready to transfer to the unwiring stage. The flight bar is now ready to load with more jigs.

All process tanks are fitted with local exhaust ventilation. The closest Operator's workstation is situated approx. 3 metres from the plating tanks

Figure 3: Process tank

Figure 4: Air flow on extracted bath

Figure 5: Operator's workstation

This task is considered in the estimation of exposure to hexavalent chromium. It is treated in this CSR in the Worker Contributing Scenario 2, 7 & 8 (WCS 2, 7 & 8).

• Unwiring

The plated parts are removed from the jigs by an operator and placed into bins. The passivation process reduces the Chrome 6 to Chrome 3 as the passivate forms a hydrated gel which hardens on drying. This hydrated gel contains a small amount of hexavalent chrome in its matrix.

The components are then placed in an oven ay 130C for 30 minutes to test the adhesion of the plating to the base material. This process dries out the passivate slightly, which improves the shell continuity (which is required) and reduces the hexavalent Chrome to ensure the parts meet the requirements of RoHS.

<u>This task is considered in the estimation of exposure to hexavalent chromium. It is</u> <u>treated in this CSR in the Worker Contributing Scenario 10 (WCS 10).</u>

• Sampling Passivate vat for analysis

A small amount of the passivate solution is taken from the main vat in order to check the concentration of the constituents or check the Ph.

The analysis is carried out in the onsite laboratory which is situated adjacent to the Plating shop. Appropriate PPE is worn during this activity. Exposure to chemicals is limited. Operation is carried out once per day.

From this analysis additions to the process solution are calculated.

This task is considered in the estimation of exposure to hexavalent chromium. It is treated in this CSR in the Worker Contributing Scenario 3 & 4 (WCS 3 & 4).

• Decanting chemicals for additions

Chemicals are supplied in 25 Litre containers. In order to accurately make the additions to the process solution it is necessary to decant chemicals from the 25 Litre container into a smaller measuring jug (2 Litres). This operation is carried out once per day by one operator wearing appropriate personal protective equipment (PPE).

This task is considered in the estimation of exposure to hexavalent chromium. It is treated in this CSR in the Worker Contributing Scenario 5 (WCS 5).

• Addition of chemicals to main vat

Once the correct amount of chemicals has been measured out, they are added directly to the vat by the operator (Typically 1 Litre per day), whilst carrying out this task appropriate PPE is worn.

<u>This task is considered in the estimation of exposure to hexavalent chromium. It is</u> <u>treated in this CSR in the Worker Contributing Scenario 6 (WCS 6).</u>

• Make up of new solution

The tank is filled half full of DI Water using a pump. The required quantities of chemicals needed to make up the passivate are added in specific order (according to the Technical Data Sheet for the process), using a drum pump.

Smaller quantities are decanted into a bucket and added directly to the tank by the operator. The tank is then topped up to working level with DI Water. During this process the operator is wearing appropriate PPE whilst situated near to the process tank for approximately 30 minutes.

This task is considered in the estimation of exposure to hexavalent chromium. It is treated in this CSR in the Worker Contributing Scenario 1 (WCS 1).

• Discarding used solution

Heater is turned off and the solution is allowed to cool. The solution is then pumped using a drum pump into a clean IBC. The lid is secured tightly back on to the IBC and it is moved to storage prior to collection by a licensed hazardous waste disposal company.

During this process the operator is wearing appropriate PPE whilst located near to the vat for approximately 15 minutes.

This task is considered in the estimation of exposure to hexavalent chromium. It is treated in this CSR in the Worker Contributing Scenario 9 (WCS 9).

• Waste Water Treatment Plant

The rinse water streams are segregated into Acid / Chrome and Alkali / Cyanide before running into the effluent treatment plant for processing.

Chrome reduction, Cyanide oxidation, Neutralisation (ph9.00), Flocculation and Settlement are carried out before the waste stream is discharged to sewer.

The metal hydroxide sludge collected through settlement is passed through a filter press for dewatering. The water passes back through the effluent plant. The sludge, compacted into "cake" is collected before being taken off site by a licensed hazardous waste disposal company.

Operating parameters are recorded daily. Samples of the discharge to sewer are taken daily and tested in the on-site lab for metals. Utilities company (Dwr Cymru) take a formal sample at least monthly. All results are reported to NRW annually in line with the requirements of our operating permit (BV7443IP).

Concentrated solutions are transferred into IBC's and taken off site for treatment and disposal by a licensed hazardous waste disposal company.

This task is considered in the estimation of exposure to hexavalent chromium. It is treated in this CSR in the Worker Contributing Scenario 10 (WCS 10).

9.1.1.2 Tonnage Information / Number of Workers exposed:

Tonnage Information

Assessed tonnage:

#4

#3 (Olive Drab), 150 litres (50% Chromic Acid content), 75 Kg Chromic Acid

- (Black Passivate), 550 litres (43% Chromic Acid), 240 Kg Chromic Acid
- #5 (Yellow Passivate), 25 litres, 7 Kg of Chromium Trioxide

Chromic Acid Flake 50 Kg (100% Chromic Acid), 50 Kg Chromic Acid

Total= 0.372 tons

		2017	2018	2019	2020	2021	2022	2023	2024	2025	2026
Quantity	Forecast	1.00	0.950	0.850	0.850	0.750	0.700	0.700	0.650	0.650	0.600
(Tonnes)	Actual	0.800	0.925	0.675	0.825	0.575	0.550	0.600	0.425		

Table 2: Past and future estimated consumption on the Abercynon site

The number of workers within the Plating Shop carrying out plating activities is 7. There is also 1 Plating Shop Manager who frequently enters the room for sample taking, monitoring, and making additions.

Annual health screening of employees within the area and ancillary staff, such as maintenance engineers, is performed.

An external company carries out Local Exhaust Ventilation (LEV) testing throughout the site including the plating tank extraction and laboratory fume cabinets. This is to ensure that the extraction systems are functioning correctly and extracting at the correct air velocities and volumes. See Annex III for test results of plating tank extraction.

An external company also carries out air monitoring throughout the site, including the plating and effluent treatment rooms using static and personal sampling. Table 3 below shows most recent results regarding chromium (January 2025). We considered biological monitoring but concluded that it wasn't required, due to the low levels of detection during the air monitoring study and Advance Reach Tool (ART) modelling.

Sample Ref	Media ID	Start Time	End Time	Activity / Location	Sample Duration (mins)	Flow Rate (Lmin ⁻ ¹)	Sampled Volume (L)	Analyte	Mass of Analyte (mg)	Concentration in Air (mg.m ⁻³)
7	Cr2	08:54	13:12	Opposite to the olive drab passivate tank 8 on the Zinc Line	258	2.00	516	Hexavalent Chromium (CrVI)	0.00015	0.00029

Static Sampling

Personal Sampling

:	Sample Ref	Media ID	Start Time	End Time	Operator	Activity/ Location	Shift Length (hrs)	Sample Duration (mins)	Flow Rate (L min ⁻ ¹)	Sampled Volume (L)	Analyte	Mass of Analyte (mg)	Concentra (mg.m ⁻³)	ation in Air 8-Hr TWA	WEL or Guidance Limit	% of WEL or Guidance Limit
	1	Cr1	08:29	13:25	#6	Zinc Line	8	296	2.00	591	Hexavalent Chromium (CrVI)	0.0001	0.00024	0.00024	0.01	2

ALARP (or broadly equates to ALARP), and in the absence of a WEL or alternative guidance value Results equal or exceed the WEL/guidance value

Results **equal or exceed 25%** of the WEL/guidance value (EEUK Group Ltd consider this significant) Results **between 10% and 25%** of the WEL/guidance value (EEUK Group Ltd consider compliance is likely) Results <10% of the WEL/guidance value (EEUK Group Ltd consider compliance is demonstrated)

Sample Ref.	Operator Name / Sample Location	Analyte	Average Sampling Rate (L/Min)	Sample Time (Mins)	Sample Volume (l)	Amount Detected (mg)	Conc'n (mg.m-3)	8 Hr TWA (mg.m-3)	% of Limit
ECL/21/5158	#7 Plating Plating Line	Chromium	2.0	06:17 - 13:15 (418)	836	0.0006	0.0007	0.0007	<1.0
ECL/21/5161	#8 Plating Unwiring	Chromium	2.0	415	830	0.0013	0.0016	0.0014	<1.0
ECL/21/5164	Static Plating Gold Line	Chromium	2.0	06:23 - 13:15 (412)	824	<0.0005	<0.0006		<1.0
ECL/21/5167	Static Plating Wiring	Chromium	2.0	06:26 - 13:15 (409)	818	<0.0005	<0.0006		<1.0
ECL/21/5173	#9 Plating Plating Line	Chromium VI	2.0	06:31 - 13:29 (418)	836	<0.0003	<0.0004	<0.0003	<3.3
ECL/21/5174	#10 Plating Unwiring	Chromium VI	2.0	06:32 - 13:30 (418)	836	<0.0003	<0.0004	<0.0003	<3.3
ECL/21/5175	Static Plating Gold Line	Chromium VI	2.0	06:30 - 13:29 (419)	838	<0.0003	<0.0004		<3.6

24th August 2021 - Occupational Exposure Monitoring on behalf of AB Connectors, Abercynon - Plating

 Key:
 I/min
 = litres per minute
 mg
 = milligrams

 conc'n
 = concentration
 mg.m⁻³
 = milligrams per cubic metre

 TWA
 = Time Weighted Average (for personal samples only)
 %
 %
 of WEL
 = calculated for all samples, though only personal sample collection should be directly compared to any listed limit value

 >50% Limit
 10% - 50% Limit

 10% Limit

Table 3: Static and personal chromium monitoring results

Sampling of extracted air is carried out annually for various metals including chromium. Tables 4, 5, 6, & 7 is an extract of results showing chromium data.

Metals checked to EN14385

Particulate checked to EN13284-1

Oxides of Nitrogen as NO2 checked to EN14792

			ive Sumr	nary		0	ele	m	er
		MONIT	DRING RES	ULTS					
		AB Connec	tors Ltd, Abe	rcynon					
			Plating Shop						
			ecember 20						
		where MU	Measurement		ssociated wi	th the Result			
			Concentr	ation			Mass Emis	ssion	
Parameter		Units	Result	MU	Limit	Units	Result	MU	Limit
				+/-				+/-	
Total Particulate Matter	1	mg/m ³	0.72	0.43	2	g/hr	9.5	5.7	-
Cadmium	1	mg/m ³	0.003	0.0004		g/hr	0.05	0.01	12
Chromium	1	mg/m ³	0.01	0.002		g/hr	0.16	0.03	-
Nickel	1	mg/m ³	0.01	0.002		g/hr	0.18	0.03	
Zinc	1	mg/m ³	0.04	0.006	-	g/hr	0.53	0.09	
		% v/v	1.5	0.08					
Water Vapour				-					
		°C	26.6						
Water Vapour Stack Gas Temperature Stack Gas Velocity		°C m/s	26.6 4.4	0.14					
Stack Gas Temperature				0.14					

NOTE: VOLUMETRIC FLOW RATE & VELOCITY DATA TAKEN FROM AN AVERAGE OF ALL OF THE ISOKINETIC RUNS.

¹ Reference Conditions (REF) are: 273K, 101.3kPa, without correction for water vapour content.

Table 4: Extracted air sample data – A1

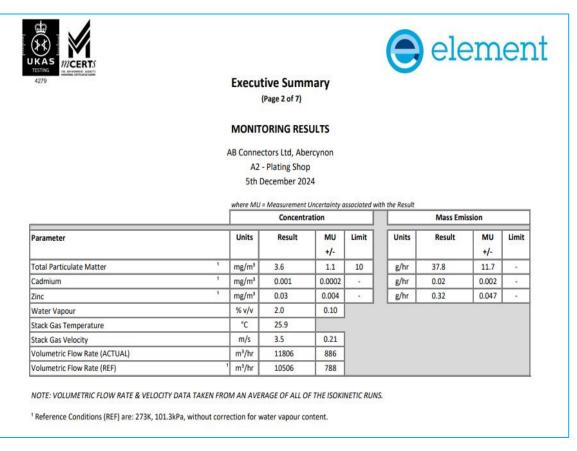


Table 5: Extracted air sample data – A2

			ive Summ	ary		0	ele	m	er
		MONITO	ORING RESU	JLTS					
		AB Connec	tors Ltd, Abero	cynon					
		A3 -	Plating Shop						
		5th D	ecember 2024	1					
		where MIL-	Maacuramantille	neartainty a	recognized wi	th the Recult			
		where MU =	Measurement Un Concentrat		ossociated wi	ith the Result	Mass Emi	ssion	
Parameter		where MU =			Limit	Units	Mass Emis Result	MU +/-	Limit
Parameter Total Particulate Matter	,		Concentrat	tion MU				MU	Limit
	1	Units	Concentrat Result	tion MU +/-	Limit	Units	Result	MU +/-	
Total Particulate Matter		Units mg/m ³	Concentrat Result 0.91	MU +/- 0.56	Limit 2	Units g/hr	Result 8.8	MU +/- 5.4	-
Total Particulate Matter Chromium	1	Units mg/m ³ mg/m ³	Concentrat Result 0.91 0.007	MU +/- 0.56 0.001	Limit 2 -	Units g/hr g/hr	Result 8.8 0.07	MU +/- 5.4 0.01	•
Total Particulate Matter Chromium Zinc	1	Units mg/m ³ mg/m ³ mg/m ³	Concentrat Result 0.91 0.007 0.03	MU +/- 0.56 0.001 0.004	Limit 2 -	Units g/hr g/hr	Result 8.8 0.07	MU +/- 5.4 0.01	•
Total Particulate Matter Chromium Zinc Water Vapour	1	Units mg/m ³ mg/m ³ mg/m ³	Concentrat Result 0.91 0.007 0.03 2.3	MU +/- 0.56 0.001 0.004	Limit 2 -	Units g/hr g/hr	Result 8.8 0.07	MU +/- 5.4 0.01	•
Total Particulate Matter Chromium Zinc Water Vapour Stack Gas Temperature	1	Units Mg/m ³ Mg/m ³ Mg/m ³ %v/v °C	Concentrat Result 0.91 0.007 0.03 2.3 23.3	MU +/- 0.56 0.001 0.004 0.12	Limit 2 -	Units g/hr g/hr	Result 8.8 0.07	MU +/- 5.4 0.01	•

¹ Reference Conditions (REF) are: 273K, 101.3kPa, without correction for water vapour content.

Table 6: Extracted air sample data – A3

			tive Sumn (Page 2 of 7)	nary			ele	m	er
		MONIT	ORING RES	ULTS					
		A4 4th	ectors Ltd, Abe - Wet Scrubbe December 202	er 24	associated wi	th the Result			
			Concentra				Mass Emi	ssion	1
Parameter		Units	Result	MU +/-	Limit	Units	Result	MU +/-	Limit
Total Particulate Matter	1	mg/m ³	0.77	0.32	2	g/hr	16.9	7.1	-
Cadmium	1	mg/m ³	0.007	0.001		g/hr	0.14	0.02	
Copper	1	mg/m ³	0.02	0.003		g/hr	0.36	0.06	-
Zinc	1	mg/m ³	0.04	0.006	- A	g/hr	0.81	0.13	
Total Oxides of Nitrogen		mg/m ³	< 3.9	1.83		g/hr	< 85.9	40.2	7.
Oxides of Nitrogen (as NO ₂)		mg/m ³	2.4	0.88	1.5	g/hr	53.2	19.5	-
Water Vapour		% v/v	1.5	0.41					
Stack Gas Temperature		°C	18.0						
Stack Gas Velocity		m/s	7.0	0.12					
(alignments) - Elever Data (ACELLAL)		m³/hr	23674	1143					
Volumetric Flow Rate (ACTUAL)		m³/hr	21879	1056					

Reference Conditions (REF) are: 273K, 101.3kPa, without correction for water vapour content

Table 7: Extracted air sample data – A4

9.1.1.3 Overview of Exposure Scenarios

The following table lists all the exposure scenarios (ES) assessed in this CSR.

Identifiers*)	Market Sector	Titles of exposure scenarios	Tonnage (tonnes per year)
ES 1:		Industrial use of hexavalent chromium in bath for the surface treatment of connectors	0.750
Professional e	nd use: PW : SL-IW-#, S	ulation: F-#, Industrial end use at site: IV +#, Consumer end use: C-#, Service life (b ervice life (by professional workers): SL-I #.)	y workers in

Table 8: Overview of exposure scenarios

Contributing scenario	ERC / PROC	Name of the contributing scenario	Size of the exposed population
ES 1: Industria	al use of hexa	valent chromium in bath for the surfac	ce treatment of
		connectors	
ECS 1	ERC5	Industrial use resulting in inclusion	Regional:
		into or onto a matrix	Local:
WCS 1	PROC8b	Initial Make Up of Solution	1
WCS 2	PROC2	Dipping Connector Parts into Passivate	1
WCS 3	PROC8a	Sampling Vat for Analysis	1
WCS 4	PROC15	Lab Analysis	1
WCS 5	PROC8b	Decanting of Chemical	1
WCS 6	PROC8b	Making Additions to Vat Based on Analysis (Maintenance)	1
WCS 7	PROC2	Dipping Parts into Rinse Water After Passivation	1
WCS 8	PROC7	Drying of Components	1
WCS 9	PROC8b	Discharge of Waste Solution	1

WCS 10 PROC0 Operators in Work Area Not 7 Associated with Chrome Passivate Process				
ES 2: Consumers This section is not relevant since no consumers will use the final manufactured articles (as described in 9.3 below)				

Table 9: Overview of Contributing Scenarios

9.1.2 Introduction to the assessment

9.1.2.1 Environment

Following REACH, Article 62(4)(d), the CSR supporting an Analysis for Alternatives (AfA) needs to cover only those potential risks arising from the intrinsic properties specified in Annex XIV. Accordingly, only the potential human health risks related to the classification of chromium trioxide as a carcinogenic and mutagenic toxicant are considered in the current CSR.

At the end of the process, all waste is managed by a specialised waste management company that also collects all waste (filters, PPE, packaging etc.), except liquid waste which is treated onsite.

Nevertheless, in the environmental contributing scenarios, we will analyse and discuss the possible release and risk for the general population.

9.1.2.2 Human via Environment

Risk analysis for man via environment will be performed according to the conclusions of the environmental release identified in the environmental contributing scenario.

9.1.2.3 Workers

The excess risk calculation will be based on RAC/27/2013/06 Rev.1 which establishes a reference dose response relationship for carcinogenicity of hexavalent chromium.

Regarding the publication of the RAC, no data clearly indicates that dermal exposure to Cr (VI) compounds presents a risk of cancer to humans. As a consequence, the risk induced via dermal exposure will not be considered in what follows, especially taking into account the dermal protections used when the substance is handled.

Moreover, we will estimate the cancer risk mainly due to volatility of the substance, for lung cancer, and maximize excess of cancer risk by not taking into account the small intestine cancer risk.

Monitoring measurement campaign are planned on site for exposure assessment of the entire process. For the description of each contributing scenario, we will use the ART 1.5 software to calculate an associated value of exposure. In the modelling process, we will use the Long-term value at 90th percentile for the entire contributing scenario. ART modelling reports are given in Annex I. It has to be stressed that, in the ART model, the duration of activity does not impact the results of the raw exposure estimated for one task. Thus, the duration can be adjusted for each member for the estimation of the global exposure (made in section 10 and duration presented in Annex I). The results of the modelling approach will be compared to monitoring measurements. Nevertheless, to calculate the excess risk of cancer (section 10) we will use the estimation value from ART to assess a quantitative analysis.

Considering reprotoxic effects, this Chemical Safety Report focuses on the use of hexavalent chromium for the carcinogenic / mutagenic effects. RMM are in place to reduce the risk as low as possible in the framework of the non-threshold effects (cancer) of the substances. Consequently, it is deemed that these measures also cover the risk due to threshold effects for reproduction. Finally, when threshold effects are adequately controlled, they must not be taken into account in the excess risk calculation.

Thus, exposures and excess risk calculation will be developed considering only carcinogenic effects.

It has to be stressed that the estimated exposures presented for each contributing scenario in the section 9 are based on the worst case according to the description of the site, as presented in Annex I.

9.1.2.4 Consumers

This section is not relevant since no consumer will use the final manufactured articles because they are high technology equipment and they are not intended to be used by consumers.

Only professional workers use the treated connector parts.

9.2 Exposure Scenario 1 for Workers

Sector of use: Industrial use: Uses of substances as such or in preparations at industrial sites **(SU 3)**

Article categories: Metals articles (AC 7)

Environment contributing scenario(s): ECS1 - Industrial use resulting in inclusion onto a matrix (ERC 5)

Worker / Consumer contributing scenario(s):

WCS 1 – Initial make up of solution (PROC8b)

WCS 2 - Dipping connector parts into passivate (PROC2)

WCS 3 – Sampling vat for analysis (PROC8a)

WCS 4 – Lab Analysis (PROC15)

WCS 5 – Decanting of chemical (PROC8b)

WCS 6 – Making additions to vat based on analysis (PROC8b)

WCS 7 - Dipping parts into rinse water after passivation (PROC2)

WCS 8 – Drying of components (PROC7)

WCS 9 – Discharge of waste solution (PROC8b)

WCS 10 – Operators in work area not associated with chrome passivate process (**PROC0**)

Subsequent service life exposure scenario(s): Not applicable

Exposure scenario(s) of the uses leading to the inclusion of the substance into the article(s): Not applicable

Description of the activities and technical processes covered in the exposure scenario:

The different tasks and various conditions are described within Contributing Scenarios.

Explanation on the approach taken for the ECS:

The exposure scenario concerns the immersion of connector parts into vats for chromium treatment. Only the tasks which lead to exposure of hexavalent chromium, as identified in section 9.1.1 are analysed as Contributing Scenarios. For all the

Contributing Scenarios concerning the exposure at the workplace, detailed conditions of use at the site are presented in Annex I.

Efficiency of respiratory protective equipment

When it is described in the Contributing Scenario, wearing respiratory protective equipment (RPE) is mandatory. Thus, to estimate exposure of workers at the workplace, it is necessary to determine the effectiveness of the respiratory protection. The result is the assigned protection factor (APF). The choice of this factor may vary, depending on the country for which it is used. The technical data sheets in Annex II presents the protective factors assigned to the breathing equipment used in this exposure scenario. It is a half mask which has been tested to European Standard EN 143, EN 140 or EN 405 and has met the relevant requirements of the category P3.

	Assigned protection factors	(APF)
Nominal protection factor	EN 140 / 143	EN 405
United Kingdom	20	10

APF presented in annex C of the NF EN 529 standard

Table 10: Assigned protection factor for United Kingdom

The decision was made to use an APF of 10. This ties in with a precautionary approach and with the methodology of the modelling approaches of MEASE¹, recommended in the technical guidance of ECHA (ECHA 20162).

Exposure Limits

Substance	Long-term limit (8-hr reference	ſWA	Short-term exposure li minute refe period)	imit (15-	Comments
	PPM	Mg.m3	PPM	Mg.m3	
Chromium (VI) Trioxide		0.01		0.3(2)	Carc Capable of causing cancer and/or heritable genetic damage Sen Capable of causing occupational asthma BMGV. Biological Monitoring Guidance Values

Table 11: List Source(s)

¹ MEASE is a modelling tool for exposure estimation at the workplace. As described in section 9.1.2.3, the modelling approach of this CSR, is based on the ART Tool for a Tier 2 exposure estimation. MEASE is not used because it is a Tier 1 exposure estimation. However, the present version of ART cannot estimate the exposure with respiratory protective equipment and consequently an assigned protection factor needs to be determined.

2 Guidance on information requirements and chemical safety assessment, Chapter R.14: Occupational exposure estimation.

9.2.1 Environmental Contributing Scenario 1

Industrial use resulting in inclusion onto a matrix.

9.2.1.1 Conditions of Use

Param	neter	Information
Produ	ct Characteristics	
٠	Product	Hexavalent chromium in a mixture
•	Physical form	Liquid
٠	Amount	0.4 t / year
•	Weight fraction of the substance in	Concentration of substance in a bath is in the
	the liquid mixture	range 1.3 to 5 % (w/w)
Opera	ational conditions	
•	Emission sources	No release is expected on the process, except for: - Air extraction from the baths treatment
		treatment – Waste production during the treatment of liquid effluents The integrity of the process circuit is regularly monitored. The possibilities of release are detailed below.
•	Atmospheric emissions	Air from local extraction of the baths in the plating shop is collected through a specific system. The air is then evacuated through a chimney on the roof of the plating shop. The possible atmospheric emissions will be considered in the following part of the CSR.
•	Liquid effluents	Liquid effluents containing concentrated hexavalent chromium is pumped, using a drum pump into a clean IBC. The lid is secured tightly back on to the IBC and it is moved to storage prior to collection by a licensed waste disposal company. The rinse water streams are segregated into Acid / Chrome and Alkali / Cyanide before running into the effluent treatment plant for processing. Chrome reduction, Cyanide oxidation, Neutralisation (ph9.00), Flocculation and Settlement are carried out before the waste stream is discharged to sewer.
•	Waste production	All the waste (sludge and used materials) produced during these treatments is managed by a specialised certified waste company.

Table 12: condition of use for the contributing scenario 1

9.2.1.2 Releases

Considering the data presented in Table 9, only atmospheric release could be considered. The air emissions are treated through a specific process, which reduces hexavalent chromium.

Experts considered in different official reports on possible exposure to hexavalent chromium^{3&4}, that the most probable risk would be in the local air compartment. Indeed, on water and soil, hexavalent chromium is transformed into trivalent chromium via redox reaction⁵.

Moreover, in the EU RAR about release of hexavalent chromium compounds from use in metal treatment, no air release was considered (except during formulation of products)⁶.

In order to provide more information on possible atmospheric release, the following table (13) presents the maximum tonnage of substances considered and the distance between the emission source located on the plating shop and the first home.

³ European Union Risk Assessment Report on hexavalent chromium substances (Volume 53 3rd priority list)

⁴INERIS - Fiche de données toxicologiques et environnementales du chrome et de ses dérivés

 $_{\rm s}{\rm EPA}$ Ground Water Issue, Natural Attenuation of Hexavalent Chromium in Groundwater and Soils, EPA154015-941505, 1994

⁶ EU RAR (European Union Risk Assessment Report); *Chromium trioxide, Sodium chromate, sodium dichromate, ammonium dichromate and potassium dichromate Risk Assessment.* 3rd priority list volume 53. 2005

Company	Site	Distance	Total tonnage
AB Connectors	Abercynon	=100 m	0.75

Table 13: Distance from point of release and tonnage of substance

We have both estimated the release based on modelling exposure and used actual discharge measurement from emissions monitoring.

Worst Case Scenario

- Distance from point of release (nearest houses) 100 M
- Release of chemicals (Tonnes) 0.75 T based on total volume of chemical purchased and volume of one vat
- Worst case: an atmospheric release of **0.75 tons** per year with a distance of 100m to the nearest home

The technical guidance document part II⁷ proposes estimated release factors depending on the activity type.

The associated release factor is determined by the following parameters:

- o IC 16 (Industrial category: engineering industry),
- Solubility > 1g/L,
- Vapor pressure <11 Pa,
- MC=3 (Main category: Non-dispersive use)

Thus, the release factor is determined at 0.00001.

Based on this release estimation and the Doury abacus⁸ (which estimates the dispersion speed), we calculated the exposure of the general population around the site for the worst case and the associated risk.

Worst case (0.75 tons/100m):

Release per working day is estimated (considering 365 working days per year):

Daily release, worst case = 750<u>x1000000</u> x 0.00001

365

= 20.55 mg/day

Worst case, release per day: 20.55 mg/day (average of 0.24 µg/s on 24h)

For the assessment, we took the nearest house at approximately 100m for the worst case.

Atmospheric transfer coefficient (at 100m) from Doury Abacus: 1.87x10⁻³ s/m³

The release in air adjusted on 24h is:

```
Release 0.24µg/s X Atmospheric transfer coefficient (at 100m) = 0.00045\mu g/m^3
```

From Doury Abacus (1.87x10⁻³ s/m³)

Actual Discharge Measurement from Emissions Monitoring

- Distance from point of release (nearest houses) 100 M
- Release of chemicals (Tonnes) 0.002 T based on total volume of chemical purchased
- Worst case: an atmospheric release of **0.002 tons** per year with a distance of 100m to the nearest home

The technical guidance document part II⁷ proposes estimated release factors depending on the activity type.

The associated release factor is determined by the following parameters:

- IC 16 (Industrial category: engineering industry),
- Solubility > 1g/L,
- Vapor pressure <11 Pa,
- MC=3 (Main category: Non-dispersive use)

Thus, the release factor is determined at 0.00001.

Based on this release estimation and the Doury abacus⁸ (which estimates the dispersion speed), we calculated the exposure of the general population around the site for the worst case and the associated risk.

Worst case (0.002 tons/100m):

Release per working day is estimated (considering 365 working days per year):

Daily release, worst case = 2<u>x 1000000</u>x 0.00001

365

= 0.055 mg/day

Worst case, release per day: 0.055 mg/day (average of 0.00064 µg/s on 24h)

For the assessment, we took the nearest house at approximately 100m for the worst case.

Atmospheric transfer coefficient (at 100m) from Doury Abacus: 1.87x10⁻³ s/m³

The release in air adjusted on 24h is:

Release 0.00064µg/s X Atmospheric transfer coefficient (at 100m) = $0.0000012µg/m^3$

From Doury Abacus (1.87x10⁻³ s/m³)

 $_{\scriptscriptstyle 7} Technical$ Guidance Document on risk assessment, part II about environmental risk assessment

[®]Abaques d'evaluation directe des transferts atmospheriques d'effluents gazeux, Doury et al, February 1980

9.2.1.3 Exposure and risks for the environment and man via the environment

As described above, release of hexavalent chromium in the environment via soil and water are negligible. No exposure to the substance of man via environment is therefore considered in this exposure scenario via these compartments.

Considering the release in the atmospheric compartment, after calculation, the exposures for general population are:

o 0.45 x 10⁻³ μ g/m3 per 24h and considering 365 working days for the worst case.

The excess of risk of lung cancer for the general population will be adjusted to the review period.

Weighted excess of lung cancer risk for general population	Value
Excess risk of lung cancer, per µg/m3 of Cr (VI) based on 70 years, 365 days per year, 24h per day (RAC 2013)	2.9x10 ⁻²
Excess risk of lung cancer, per µg/m3 of Cr (VI) based on 1 year, 365 days per year, 24h per day	4.1x10 ⁻⁴
Excess risk of lung cancer, per µg/m3 of Cr (VI) based on 7 years (original review period for Use-2), 365 days per year, 24h per day	2.9x10 ⁻³
Excess risk of lung cancer, per µg/m3 of Cr (VI) based on 12 years 365 days per year, 24h per day	5.0x10 ⁻³

Table 14: RAC adjusted excess of risk calculation for general population

Excess risk	Worst case	Value	
Final individual excess risk of lung cancer based on 7 years (review period for Use-2), 365 days per year, 24h per day	(0.75 tons & 100m)	0.45x10 ⁻⁶	

Table 14: Risk calculation for general population

All the calculated excess risks presented in the above table are in the order of magnitude of 10⁻⁶. The approach used is a generic approach with several uncertainties which lead to an over-estimation of the exposure:

- The results presented above are based on worst case scenario (in terms of tonnage of substance and distance from the source of emission).

- The air extraction is evacuated from the plating shop through a chimney located on the roof of the plating shop. This chimney is not located high enough to consider a wide atmospheric dispersion.

- Specific treatment process for treating the air extracted from the process, before evacuating it in the atmosphere (acido-basic scrubber, mist eliminator...) are not considered in the generic estimation presented above.

- This estimation does not take into account the degradation/transformation reaction of hexavalent chromium. In the environment, including in the air compartment, hexavalent chromium is a strong oxidising agent which can react with a wide range of reducing agents to form chromium (III)16. It has also been shown that chromium (VI) can be photochemically reduced by UV-light to chromium (III).

Conclusion

Compared to the worker's excess risk of lung cancer

Considering the risk management measures implemented

Considering the level of containment of the process

Considering the uncertainties which lead our calculation to an over-estimation

Considering that the decision point for "acceptable" lifetime cancer risk levels used for general population are generally around 10^{-5} *

The risk for general population is considered as negligible.

* This decision point is presented in the technical guidance of ECHA

9.2.2 Worker Contributing Scenario 1 (WCS 1) Initial Make Up of Solution

This contributing scenario deals with the exposure of workers during the initial make up of solution containing hexavalent chromium in the vat treatment, as described in paragraph 9.1.1.1.

9.2.2.1 Conditions of Use

In this contributing scenario, exposure is estimated with the modelling approach of ART (Advanced REACH Tool) version 1.5.

Chemical Details		
Chemical	Chromium trioxide	
CAS No ⁻ 1333-82-0		
Scenario Details		
Number of activities	1	
Total Duration	30 mins	
Non-exposure period	0	
Emissions		
Emission Sources	Far field	
Duration	30 mins	
Operational Controls		
Substance Emission Potential		
Substance Product Type	Liquids	
Process Temperature	Room temperature	
Vapour Pressure	11Pa	
Liquid Mole Fraction	1	
Activity Emission Potential		
Activity Class	Falling liquids	
Situation	Transfer of liquid product with flow of 1 - 10 Vminute	
Containment Level	Open process	
Loading Type	Splash loading, where the liquid dispenser remains at the top of the reservoir and the liquid splashes freely	
Surface Contamination		
Process Fully Enclosed?	No	
Effective Housekeeping Practices in Place?	Yes	
Dispersion	1	
Work Area	Indoors	
Room Size	3000m3	
Risk Management Measures		

Localised Controls		
Primary	Fixed capturing hood (90.00 % reduction)	
Secondary	No localized controls (0.00 % reduction)	
Segregation	No segregation (0.00 % reduction)	
Personal Enclosure	No personal enclosure (0.00 % reduction)	
Dispersion		
Ventilation rate	3 air changes per hour (ACH)	
Personal Protective Equipment		
Respiratory Protective Equipment (RPE)	3M™ Maintenance-Free Reusable Half Mask (Technical Data Sheets (TDS) in Annex II)	
Other Personal Protective Equipment	Face Visor (approved according to EN 166) Polysol Chemical Resistant Glove (TDS in Annex II)	
	Safety footwear (approved according to EN ISO 20345)	
Version of the modelling tool: ART (Advanced REACH Tool) version 1.5		

Table 15: Conditions of use of Worker Contributing Scenario 1

9.2.2.2 Predicted exposure levels

ART predicts air concentrations in a worker's personal breathing zone outside of any Respiratory Protection Equipment (RPE). The use of RPE is considered separately.

Mechanistic model results

The predicted 90th percentile full-shift exposure is 0.0003 mg/m³.

The 90% confidence interval is 0.000055 mg/m^3 to 0.0021 mg/m^3 .

9.2.3 Worker Contributing Scenario 2 (WCS 2) Dipping Connector Parts into Passivate

This contributing scenario deals with the exposure of workers during the dipping of connector parts into passivate solution containing hexavalent chromium in the vat, as described in paragraph 9.1.1.1.

9.2.3.1 Conditions of Use

In this contributing scenario, exposure is estimated with the modelling approach of ART (Advanced REACH Tool) version 1.5.

Chemical Details			
Chemical	Chromium trioxide		
CAS No ⁻	1333-82-0		
Scenario Details			
Number of activities	1		
Total Duration	60 mins		
Non-exposure period	0		
Emissions			
Emission Sources	Far field		
Duration	60 mins		
Operational Controls			
Substance Emission Potential			
Substance Product Type	Liquids		
Process Temperature	Room temperature		
Vapour Pressure	11Pa		
Liquid Mole Fraction	1		
Activity Emission Potential			
Activity Class	Activities with agitated surfaces		
Situation	Open surface 0.3 – 1m2		
Surface Contamination			
Process Fully Enclosed?	No		
Effective Housekeeping Practices in	Yes		
Place?			
Dispersion			
Work Area	Indoors		
Room Size	3000m3		
Risk Management Measures			
Localised Controls			
Primary	Fixed capturing hood (90.00 % reduction)		
Secondary	No localized controls (0.00 % reduction)		
Segregation	No segregation (0.00 % reduction)		
Personal Enclosure	No personal enclosure (0.00 % reduction)		
Dispersion			
Ventilation rate	3 air changes per hour (ACH)		
Personal Protective Equipment			
Respiratory Protective Equipment (RPE)	No RPE		
Other Personal Protective Equipment	Safety footwear (approved according to EN ISO 20345)		
Version of the modelling tool: ART (Advanced REACH Tool) version 1.5			

9.2.3.2 Predicted Exposure Levels

ART predicts air concentrations in a worker's personal breathing zone outside of any Respiratory Protection Equipment (RPE). The use of RPE is considered separately.

Mechanistic model results

The predicted 90th percentile full-shift exposure is 0.0033 mg/m³.

The inter-quartile confidence interval is 0.0016 mg/m^3 to 0.007 mg/m^3 .

9.2.4 Worker Contributing Scenario 3 (WCS 3) Sampling Vat for Analysis

This contributing scenario deals with the exposure of workers during sampling of vat containing hexavalent chromium for analysis, as described in paragraph 9.1.1.1.

9.2.4.1 Conditions of Use

In this contributing scenario, exposure is estimated with the modelling approach of ART (Advanced REACH Tool) version 1.5.

Chemical Details		
Chemical	Chromium trioxide	
CAS No [°]	1333-82-0	
Scenario Details		
Number of activities	1	
Total Duration	2 mins	
Non-exposure period	0	
Emissions		
Emission Sources	Far field	
Duration	2 mins	
Operational Controls		
Substance Emission Potential		
Substance Product Type	Liquids	
Process Temperature	298 K	
Vapour Pressure	11Pa	
Liquid Mole Fraction	Minor	
Activity Coefficient	1	
Activity Emission Potential		
Activity Class	Falling liquids	
Situation	Transfer of liquid product with flow of <	
	0.1 l/minute	
Containment Level	Handling that reduces contact between	
	product and adjacent air. Note: This does	

	not include processes that are fully
	contained by localised controls (see next
	questions).
Loading Type	Splash loading, where the liquid
	dispenser remains at the top of the
	reservoir and the liquid splashes freely
Surface Contamination	
Process Fully Enclosed?	No
Effective Housekeeping Practices in	Yes
Place?	
Dispersion	
Work Area	Indoors
Room Size	3000m ³
Risk Management Measures	
Localised Controls	
Primary	Fixed capturing hood (90.00 % reduction)
Secondary	No localized controls (0.00 % reduction)
Dispersion	
Ventilation rate	3 air changes per hour (ACH)
Personal Protective Equipment	
Respiratory Protective Equipment (RPE)	3M™ Specialty Respirators 9900
	(Technical Data Sheets (TDS) in Annex II)
Other Personal Protective Equipment	Microflex-93-260 Chemical Resistant
	Gloves (TDS in Annex II)
	Safety footwear (approved according to
	EN ISO 20345)
Version of the modelling tool: ART (Advanced REACH Tool) version 1.5	

 Table 17: Conditions of use of Worker Contributing Scenario 3

9.2.4.2 Predicted Exposure Levels

ART predicts air concentrations in a worker's personal breathing zone outside of any Respiratory Protection Equipment (RPE). The use of RPE is considered separately.

Mechanistic model results

The predicted 75th percentile full-shift exposure is 0.00018 mg/m³.

The inter-quartile confidence interval is 0.000089 mg/m³ to 0.00035 mg/m³.

9.2.5 Worker Contributing Scenario 4 (WCS 4) Lab Analysis

This contributing scenario deals with the exposure of workers during titration of sample to determine chrome content, as described in paragraph 9.1.1.1.

9.2.5.1 Conditions of Use

In this contributing scenario, exposure is estimated with the modelling approach of ART (Advanced REACH Tool) version 1.5.

Chemical Details	
Chemical	Chromium trioxide
CAS No ¹	1333-82-0
Scenario Details	
Number of activities	1
Total Duration	10 mins
Non-exposure period	0
Emissions	•
Emission Sources	Near Field
Duration	10 mins
Operational Controls	•
Substance Emission Potential	
Substance Product Type	Liquids
Process Temperature	293 K
Vapour Pressure	11Pa
Liquid Mole Fraction	Minor
Activity Coefficient	1
Activity Emission Potential	
Activity Class	Activities with relatively undisturbed
	surfaces (no aerosol formation)
Situation	Open surface < 0.1 m ²
Surface Contamination	
Process Fully Enclosed?	No
Effective Housekeeping Practices in Place?	Yes
Dispersion	
Work Area	Indoors
Room Size	100m ³
Risk Management Measures	
Localised Controls	-
Primary	No localized controls (0.00 % reduction)
Secondary	No localized controls (0.00 % reduction)
Dispersion	
Ventilation rate	Only good natural ventilation
Personal Protective Equipment	
Respiratory Protective Equipment (RPE)	No RPE
Other Personal Protective Equipment	Microflex-93-260 Chemical Resistant Gloves (TDS in Annex II)

	Safety glasses (approved according to EN 166)
	Safety footwear (approved according to EN ISO 20345)
Version of the modelling tool: ART (Advanced REACH Tool) version 1.5	

Table 18: Conditions of use of Worker Contributing Scenario 4

9.2.5.2 Predicted Exposure Levels

ART predicts air concentrations in a worker's personal breathing zone outside of any Respiratory Protection Equipment (RPE). The use of RPE is considered separately.

Mechanistic model results

The predicted 75th percentile full-shift exposure is 0.035 mg/m^3 .

The inter-quartile confidence interval is 0.018 mg/m³ to 0.068 mg/m³.

9.2.6 Worker Contributing Scenario 5 (WCS 5) Decanting of Chemicals

This contributing scenario deals with the exposure of workers whilst transferring chemical from 25l drum to 2l jug for additions to vat containing hexavalent chromium, as described in paragraph 9.1.1.1.

9.2.6.1 Conditions of Use

In this contributing scenario, exposure is estimated with the modelling approach of ART (Advanced REACH Tool) version 1.5.

Chemical Details		
Chemical	Chromium trioxide	
CAS No ⁻	1333-82-0	
Scenario Details		
Number of activities	1	
Total Duration	5 mins	
Non-exposure period	0	
Emissions		
Emission Sources	Near Field	
Duration	5 mins	
Operational Controls		
Substance Emission Potential		
Substance Product Type	Liquids	

Process Temperature	293 K
Vapour Pressure	11Pa
Liquid Mole Fraction	Minor
Activity Coefficient	1
Activity Emission Potential	
Activity Class	Activities with relatively undisturbed
	surfaces (no aerosol formation)
Situation	Open surface 0.1 – 0.3 m ²
Surface Contamination	
Process Fully Enclosed?	No
Effective Housekeeping Practices in	Yes
Place?	
Dispersion	
Work Area	Indoors
Room Size	3000m ³
Risk Management Measures	
Localised Controls	
Primary	Fixed capturing hood (90.00 % reduction)
Secondary	No localized controls (0.00 % reduction)
Dispersion	
Ventilation rate	3 air changes per hour (ACH)
Personal Protective Equipment	
Respiratory Protective Equipment (RPE)	3M [™] Specialty Respirators 9900
	(Technical Data Sheets (TDS) in Annex II)
Other Personal Protective Equipment	Polysol Chemical Resistant Glove (TDS in
	Annex II)
	Safety glasses (approved according to EN
	166)
	Safety footwear (approved according to
	EN ISO 20345)
Version of the modelling tool: ART (Advanced F	REACH Tool) version 1.5

 Table 19: Conditions of use of Worker Contributing Scenario 5

9.2.6.2 Predicted Exposure Levels

ART predicts air concentrations in a worker's personal breathing zone outside of any Respiratory Protection Equipment (RPE). The use of RPE is considered separately.

Mechanistic model results

The predicted 90th percentile full-shift exposure is 0.0033 mg/m^3 .

The 90% confidence interval is 0.0006 mg/m³ to 0.023 mg/m³.

9.2.7 Worker Contributing Scenario 6 (WCS 6) Making Additions to Vat Based on Analysis

This contributing scenario deals with the exposure of workers whilst making up process solution to optimum operating level based on analysis for additions to vat containing hexavalent chromium, as described in paragraph 9.1.1.1.

9.2.7.1 Conditions of Use

In this contributing scenario, exposure is estimated with the modelling approach of ART (Advanced REACH Tool) version 1.5.

Chemical Details		
Chemical	Chromium trioxide	
CAS No [°]	1333-82-0	
Scenario Details		
Number of activities	1	
Total Duration	10 mins	
Non-exposure period	0	
Emissions		
Emission Sources	Near Field	
Duration	10 mins	
Operational Controls		
Substance Emission Potential		
Substance Product Type	Liquids	
Process Temperature	Room temperature	
Vapour Pressure	11Pa	
Liquid Mole Fraction	Minor	
Activity Coefficient	1	
Activity Emission Potential		
Activity Class	Activities with agitated surfaces	
Situation	Open surface 0.3 - 1 m ²	
Surface Contamination		
Process Fully Enclosed?	No	
Effective Housekeeping Practices in	Yes	
Place?		
Dispersion		
Work Area	Indoors	
Room Size	3000m ³	
Risk Management Measures		
Localised Controls		
Primary	Fixed capturing hood (90.00 % reduction)	
Secondary	No localized controls (0.00 % reduction)	

Dispersion		
Ventilation rate	3 air changes per hour (ACH)	
Personal Protective Equipment		
Respiratory Protective Equipment (RPE)	3M™ Specialty Respirators 9900	
	(Technical Data Sheets (TDS) in Annex II)	
Other Personal Protective Equipment	Polysol Chemical Resistant Glove (TDS in	
	Annex II)	
	Safety glasses (approved according to EN	
	166)	
	Safety footwear (approved according to	
	EN ISO 20345)	
Version of the modelling tool: ART (Advanced REACH Tool) version 1.5		

Table 20: Conditions of use of Worker Contributing Scenario 6

9.2.7.2 Predicted Exposure Levels

ART predicts air concentrations in a worker's personal breathing zone outside of any Respiratory Protection Equipment (RPE). The use of RPE is considered separately.

Mechanistic model results

The predicted 90th percentile full-shift exposure is 0.033 mg/m³.

The 90% confidence interval is 0.0059 mg/m^3 to 0.23 mg/m^3 .

9.2.8 Worker Contributing Scenario 7 (WCS 7) Dipping Parts into Rinse Water After Passivation

This contributing scenario deals with the exposure of workers whilst parts are dipped into water rinse to remove residual chemicals from passivate containing hexavalent chromium, as described in paragraph 9.1.1.1.

9.2.8.1 Conditions of Use

In this contributing scenario, exposure is estimated with the modelling approach of ART (Advanced REACH Tool) version 1.5.

Chemical Details	
Chemical	Chromium trioxide
CAS No ⁻	1333-82-0
Scenario Details	
Number of activities	1

Total Duration	5 mins		
Non-exposure period	0		
Emissions			
Emission Sources	Far Field		
Duration	5 mins		
Operational Controls			
Substance Emission Potential			
Substance Product Type	Liquids		
Process Temperature	Room temperature		
Vapour Pressure	11Pa		
Liquid Mole Fraction	Extremely small		
Activity Coefficient	1		
Activity Emission Potential			
Activity Class	Activities with relatively undisturbed		
	surfaces (no aerosol formation)		
Situation	Open surface 0.3 - 1 m ²		
Surface Contamination			
Process Fully Enclosed?	No		
Effective Housekeeping Practices in Place?	Yes		
Dispersion			
Work Area	Indoors		
Room Size	3000m ³		
Risk Management Measures			
Localised Controls			
Primary	No localized controls (0.00 % reduction)		
Secondary	No localized controls (0.00 % reduction)		
Segregation	No segregation (0.00 % reduction)		
Personal Enclosure	No personal enclosure (0.00 % reduction)		
Dispersion			
Ventilation rate	3 air changes per hour (ACH)		
Personal Protective Equipment			
Respiratory Protective Equipment (RPE)	No RPE		
Other Personal Protective Equipment	Safety footwear (approved according to EN ISO 20345)		
Version of the modelling tool: ART (Advanced REACH Tool) version 1.5			

Table 21: Conditions of use of Worker Contributing Scenario 7

9.2.8.2 Predicted Exposure Levels

ART predicts air concentrations in a worker's personal breathing zone outside of any Respiratory Protection Equipment (RPE). The use of RPE is considered separately.

Mechanistic model results

The predicted 75th percentile full-shift exposure is 0.00024 mg/m³.

The inter-quartile confidence interval is 0.00012 mg/m³ to 0.00047 mg/m³.

9.2.9 Worker Contributing Scenario 8 (WCS 8) Drying Components

This contributing scenario deals with the exposure of workers whilst drying of components following plating process to remove residual rinse water potentially containing a trace of hexavalent chromium, as described in paragraph 9.1.1.1.

9.2.9.1 Conditions of Use

In this contributing scenario, exposure is estimated with the modelling approach of ART (Advanced REACH Tool) version 1.5.

Chemical Details			
Chemical	Chromium trioxide		
CAS No ⁻	1333-82-0		
Scenario Details			
Number of activities	1		
Total Duration	5 mins		
Non-exposure period	0		
Emissions			
Emission Sources	Near Field		
Duration	5 mins		
Operational Controls			
Substance Emission Potential			
Substance Product Type	Liquids		
Process Temperature	Room temperature		
Vapour Pressure	11Pa		
Liquid Mole Fraction	Extremely small		
Activity Coefficient	1		
Activity Emission Potential			
Activity Class	Handling of contaminated objects		
Situation	Activities with treated/contaminated		
	objects (surface 0.3-1 m²)		
Contamination level	Contamination > 90 % of surface		
Surface Contamination			
Process Fully Enclosed?	No		
Effective Housekeeping Practices in	Yes		
Place?			
Dispersion			

Work Area	Indoors	
Room Size	3000m ³	
Risk Management Measures		
Localised Controls		
Primary	No localized controls (0.00 % reduction)	
Secondary	No localized controls (0.00 % reduction)	
Dispersion		
Ventilation rate	3 air changes per hour (ACH)	
Personal Protective Equipment		
Respiratory Protective Equipment (RPE)	No RPE	
Other Personal Protective Equipment	Polysol Chemical Resistant Glove (TDS in Annex II)	
	Safety glasses (approved according to EN 166)	
	Safety footwear (approved according to EN ISO 20345)	
Version of the modelling tool: ART (Advanced REACH Tool) version 1.5		

Table 22: Conditions of use of Worker Contributing Scenario 8

9.2.9.2 Predicted Exposure Levels

ART predicts air concentrations in a worker's personal breathing zone outside of any Respiratory Protection Equipment (RPE). The use of RPE is considered separately.

Mechanistic model results

The predicted 90th percentile full-shift exposure is 0.004 mg/m³.

The 90% confidence interval is 0.00072 mg/m^3 to 0.028 mg/m^3 .

9.2.10 Worker Contributing Scenario 9 (WCS 9) Discharge of Waste Solution

This contributing scenario deals with the exposure of workers whilst pumping out of process tank containing hexavalent chromium when solution needs changing, as described in paragraph 9.1.1.1.

9.2.10.1 Conditions of Use

In this contributing scenario, exposure is estimated with the modelling approach of ART (Advanced REACH Tool) version 1.5.

Chemical Details			
Chemical	Chromium trioxide		
CAS No ⁻	1333-82-0		
Scenario Details			
Number of activities	1		
Total Duration	15 mins		
Non-exposure period	0		
Emissions			
Emission Sources	Far Field		
Duration	15 mins		
Operational Controls			
Substance Emission Potential			
Substance Product Type	Liquids		
Process Temperature	Room temperature		
Vapour Pressure	11Pa		
Liquid Mole Fraction	Minor		
Activity Coefficient	1		
Activity Emission Potential			
Activity Class	Falling liquids		
Situation	Transfer of liquid product with flow of 10 100 l/minute		
Contamination level	 Handling that reduces contact between product and adjacent air. Note: This does not include processes that are fully contained by localised controls (see next questions). 		
Loading type	Splash loading, where the liquid dispenser remains at the top of the reservoir and the liquid splashes freely		
Surface Contamination			
Process Fully Enclosed?	No		
Effective Housekeeping Practices in Place?	Yes		
Dispersion			
Work Area	Indoors		
Room Size	3000m ³		
Risk Management Measures			
Localised Controls			
Primary	Fixed capturing hood (90.00 % reduction)		
Secondary	No localized controls (0.00 % reduction)		
Segregation	No segregation (0.00 % reduction)		
Personal enclosure	losure No personal enclosure (0.00 % reduction)		
Dispersion			

Ventilation rate	3 air changes per hour (ACH)	
Personal Protective Equipment		
Respiratory Protective Equipment (RPE)	3M™ Maintenance-Free Reusable Half Mask (Technical Data Sheets (TDS) in Annex II)	
Other Personal Protective Equipment	Face Visor (approved according to EN 166)	
	Polysol Chemical Resistant Glove (TDS in Annex II)	
	Safety footwear (approved according to EN ISO 20345)	
Version of the modelling tool: ART (Advanced REACH Tool) version 1.5		

Table 23: Conditions of use of Worker Contributing Scenario 9

9.2.10.2 Predicted Exposure Levels

ART predicts air concentrations in a worker's personal breathing zone outside of any Respiratory Protection Equipment (RPE). The use of RPE is considered separately.

Mechanistic model results

The predicted 90th percentile full-shift exposure is 0.0003 mg/m³.

The 90% confidence interval is 0.000054 mg/m^3 to 0.0021 mg/m^3 .

9.2.11 Worker Contributing Scenario 10 (WCS 10) Operators in Work Area Not Associated with Chrome Passivate Process

This contributing scenario deals with the exposure of various workers employed in the department completing tasks not associated with hexavalent chrome but in the vicinity of vat containing hexavalent chromium, as described in paragraph 9.1.1.1.

9.2.11.1 Conditions of Use

In this contributing scenario, exposure is estimated with the modelling approach of ART (Advanced REACH Tool) version 1.5.

Chemical Details	
Chemical	Chromium trioxide
CAS No ⁻	1333-82-0
Scenario Details	
Number of activities	1

Total Duration	480 mins	
Non-exposure period	0	
Emissions		
Emission Sources	Far Field	
Duration	480 mins	
Operational Controls		
Substance Emission Potential		
Substance Product Type	Liquids	
Process Temperature	Room temperature	
Vapour Pressure	11Pa	
Liquid Mole Fraction	Minor	
Activity Coefficient	1	
Activity Emission Potential		
Activity Class	Activities with agitated surfaces	
Situation	Open surface 0.3 - 1 m ²	
Surface Contamination		
Process Fully Enclosed?	No	
Effective Housekeeping Practices in	Yes	
Place?		
Dispersion		
Work Area	Indoors	
Room Size	3000m ³	
Risk Management Measures		
Localised Controls		
Primary	Fixed capturing hood (90.00 % reduction)	
Secondary	No localized controls (0.00 % reduction)	
Segregation	No segregation (0.00 % reduction)	
Personal enclosure	No personal enclosure (0.00 % reduction)	
Dispersion		
Ventilation rate	3 air changes per hour (ACH)	
Personal Protective Equipment		
Respiratory Protective Equipment (RPE)	No RPE	
Other Personal Protective Equipment	Safety glasses (approved according to EN 166)	
	Safety footwear (approved according to EN ISO 20345)	
Version of the modelling tool: ART (Advanced REACH Tool) version 1.5		

 Table 24: Conditions of use of Worker Contributing Scenario 10

9.2.11.2 Predicted Exposure Levels

ART predicts air concentrations in a worker's personal breathing zone outside of any Respiratory Protection Equipment (RPE). The use of RPE is considered separately.

Mechanistic model results

The predicted 90th percentile full-shift exposure is 0.0034 mg/m³.

The 90% confidence interval is 0.0006 mg/m^3 to 0.023 mg/m^3 .

9.3 Exposure Scenario 2 for Consumers:

This section is not relevant since no consumers will use the final manufactured articles because these are high technology equipment and they are not intended to be used by consumers. Only professional workers use the treated connector parts.

Considering that there is no liquid form of the mixture of hexavalent chromium remaining on the article, there is no possibility of exposure to hexavalent chromium via inhalation route.

Considering that:

- the remaining hexavalent chromium on the article is included into a matrix composed of the formation of oxidized surface of the article.

- the thick layer of this matrix is in the order of magnitude of micrometre.

- the remaining hexavalent chromium is lower than 0.01% for each article.

The cutaneous route of exposure is considered negligible.

Furthermore, as indicated by RAC, there is no data to indicate that dermal exposure to Cr (VI) compounds presents a cancer risk to humans. NIOSH reports that some data indicates that CrVI is reduced prior to systemic uptake (Corbett GE et al. 1997; Liu KJ et al. 1997).

The cancer risk to workers via dermal route in the case of the use of connectors produced is therefore considered negligible.

10 Risk Characterisation Related to Combined Exposure

10.1 Human health (related to combined, shift-long exposure)

This CSR analyses only hexavalent chromium exposure at the workplace for an industrial use. There is no possibility of exposure for professional use. The risk characterisation is performed for the Abercynon site for the Authorised use of the substance.

The risk characterisation presented in this section focuses on the inhalation exposure.

10.1.1 Workers

Two different common assumptions are made in order to estimate the frequencies of exposure during one typical year. The plating shop is considered open during 1 week per year. Each individual employee only works 44 weeks a year. Each worker working with the solutions is issued with overalls that are cleaned by an external industrial cleaning company after use. Each worker is also issued with a locker to store their Personal Protective Equipment (PPE).

The distribution of workers' tasks involves the worker contributing scenarios,

- WCS 1 Initial Make Up of Solution
- WCS 2 Dipping Connector Parts into Passivate
- WCS 3 Sampling Vat for Analysis
- WCS 4 Lab Analysis
- WCS 5 Decanting of Chemical
- WCS 6 Making Additions to Vat Based on Analysis (Maintenance)
- WCS 7 Dipping Parts into Rinse Water After Passivation
- WCS 8 Drying of Components
- WCS 9 Discharge of Waste Solution
- WCS 10 Operators in Work Area Not Associated with Chrome Passivate Process

10.1.2 Exposure Estimations for Workers

The exposures are presented as follows:

Time / Frequency

Worker Contribution Scenario (WCS)	Duration of the task	Frequency (for 12 workers of the plating shop)	Frequency (for 1 of the workers of the plating shop)
WCS 1 Initial Make Up of Solution	30 mins	1 per day	(1*5*44)/12 per year
WCS 2 Dipping Connector Parts into Passivate	60 mins	1 per day	(1*5*44)/12 per year
WCS 3 Sampling Vat for Analysis	2 mins	1 per day	(1*5*44)/12 per year
WCS 4 Lab Analysis	10 mins	1 per day	(1*5*44)/12 per year
WCS 5 Decanting of Chemical	5 mins	1 per day	(1*5*44)/12 per year
WCS 6 Making Additions to Vat Based on Analysis (Maintenance)	10 mins	1 per day	(1*5*44)/12 per year
WCS 7 Dipping Parts into Rinse Water After Passivation	5 mins	1 per day	(1*5*44)/12 per year
WCS 8 Drying of Components	5 mins	1 per day	(1*5*44)/12 per year
WCS 9 Discharge of Waste Solution	15 mins	1 per day	(1*5*44)/12 per year
WCS 10 Operators in Work Area Not Associated with Chrome Passivate Process	480 mins	1*44 per year / worker	(1*5*44)/12 per year

Table 25: Exposure Estimations for Workers

10.1.3 Comparison Between Modelling and Monitoring

Air monitoring is carried out at the Abercynon site, and this includes the monitoring of chromium. Static monitoring has been carried out by external body. External sampling involved placement of static pump in various locations; adjacent to the passivate tanks (containing hexavalent chromium chemistry). Operator worn pumps have also been used to monitor personal samples. These are attached to the operator(s) for several hours as they carry out their various tasks, specifically:

- Dipping Connector Parts into Passivate
- Dipping Parts into Rinse Water After Passivation
- Drying of Components

• Operators in Work Area Not Associated with Chrome Passivate Process

Monitoring Results mg/m ³		Modelling Results mg/m ³	
Static measurement adjacent to bath (258 mins)	0.00029	Operators in Work Area Not Associated with Chrome Passivate Process	0.0034
		Dipping Connector Parts into Passivate	0.0033
Personal measurement (296 mins)	0.00024	Dipping Parts into Rinse Water After Passivation	0.00024
		Drying of Components	0.004

Table 26: Measured and modelled results

Samples for the monitoring results above were collected by drawing air at 2 litres/minute through a NaOH treated filter housed in a SKC IOM sampling head. The sampling head was connected to a sampling pump with appropriate tubing. For personal monitoring, the sampling head was mounted in the worker's breathing zone, e.g. on his/her lapel. Following exposure, the filters were analysed via Colorimetry. The measurements are similar, but slightly lower than the modelling results.

10.1.4 Risk Characterisation

As discussed previously in chapter 9.1.2.3, the risk characterisation will be based on the RAC/27/2013/0 Rev.1, which establishes a reference dose response relationship for the carcinogenicity of hexavalent chromium.

Excess of lung cancer risk: 4×10^{-3} per μ g Cr (VI)/m³ based on a 40-year working life (8h/day, 220 days per year).

Moreover, and since chromium exposures are due to the volatility of a liquid mixture, we estimated the cancer risk mainly for lung cancer and maximised the excess of cancer risk without considering the risk for small intestine cancer.

Based on all of this information, the tables below show the calculation of the excess risk for lung cancer weighted by the working conditions on the industrial site.

Weighted excess risk of lung cancer	Value
Excess risk of lung cancer. per µg/m3 of Cr (VI) based on 40 working	4x10 ⁻³
years. 220 days per year. 8h per day (RAC 2013)	
Excess risk of lung cancer. per µg/m3 of Cr (VI) based on 1 working	1x10 ⁻⁴
year. 220 days per year. 8h per day	
Excess risk of lung cancer. per µg/m3 of Cr (VI) based on 4 working	4x10 ⁻⁴
years. 220 days per year. 8h per day	
Excess risk of lung cancer. per µg/m3 of Cr (VI) based on 7 working	7x10 ⁻⁴
years. 220 days per year. 8h per day	
Excess risk of lung cancer. per µg/m3 of Cr (VI) based on 12 working	1.2x10 ⁻³
years. 220 days per year. 8h per day	
years. 220 days per year. 8h per day	

Table 27: Excess risk of lung cancer calculation

Considering the data presented in the above table and the exposure estimations based on the modelling approach, the excess risks are calculated in the following tables.

In the following sections the global exposure and risks are considered. It has to be stressed that the average of exposure is calculated by taking into account the respiratory protective equipment (RPE) if it is used as indicated in the previous sections.

The raw exposure estimations considered for each contributing scenario are summarised in the following table:

Contributing Scenario	Raw exposure without	Raw exposure with
	RPE (µg.m ⁻³)	RPE (µg.m ⁻³)
WCS 1 Initial Make Up of Solution	0.3	0.03
WCS 2 Dipping Connector Parts into	3.3	No RPE used
Passivate		
WCS 3 Sampling Vat for Analysis	0.18	0.018
WCS 4 Lab Analysis	35.0	No RPE used
WCS 5 Decanting of Chemical	3.3	0.33
WCS 6 Making Additions to Vat	33.0	3.3
Based on Analysis (Maintenance)		
WCS 7 Dipping Parts into Rinse	0.24	No RPE used
Water After Passivation		
WCS 8 Drying of Components	4.0	No RPE used
WCS 9 Discharge of Waste Solution	0.3	0.03
WCS 10 Operators in Work Area Not	3.4	No RPE used
Associated with Chrome Passivate		
Process		

Table 28: Summary of the raw exposures (modelled concentrations)

10.1.4.1 General conclusion

All the individual excess of risk for all the workers involved in the operations using hexavalent chromium as described in this CSR does not exceed the order of magnitude of 10⁻⁵.

The decision point for "acceptable" lifetime (i.e., a working life of 40 years) cancer risk levels used for individual risk levels for workers are generally around 10⁻⁵ but higher or lower levels have been considered to be tolerable under certain circumstances¹⁰.

Workers in the Plating Shop		
Average of exposure	Individual excess risk of	Total excess risk of lung
(µg.m ⁻³)	lung cancer (µg.m⁻³)	cancer (µg.m⁻³)
4.9648	0.0200	0.1986

10.1.5 Analysis of uncertainties and improvement of

management

The exposures considered in this CSR are based on several hypotheses. They were made in order to respect a conservative approach and consequently, led to an overestimation of the exposure.

They mainly concern the following items:

1) Definition of the APF:

The applicant made the choice to tie in with a precautionary approach by using an APF of 10 for all the RPE used.

2) Modelling approach

All measurements performed on site and presented in this CSR show lower values than the modelling estimations. Consequently, modelling estimations are considered as the maximum level of exposures at the workplace. Even if the modelling approach is demonstrated to be an over estimation, the applicant made the choice to use this approach in order to be sure that the assessment is covering all the tasks involved in the use of hexavalent chromium.

¹⁰ ECHA Guidance on information requirements and chemical safety assessment, chapter R8, Appendix R. 8-14 page 141. R8, Appendix R. 8-14 page 140

3) Inputs for modelling

The inputs used for modelling cannot be strictly representative of the realistic use performed on site. In order to be completely transparent, for all the contributing scenarios, the inputs used are compared to the condition of use on site in tables 15 to 24 in 9.2. All the inputs have been chosen in order not to over-estimate the exposure estimation for each contributing scenario and to consider the worst-case scenario. Consequently, the inputs for each contributing scenarios are the worst inputs to be considered and thus lead to an over-estimation.

4) Duration of tasks and frequency used

The duration and the frequencies of the tasks were considered by taking into account the maximum possible increase of activity presented in accordance with the tonnage estimation. It does not probably reflect the exact frequencies and duration involved during the review period, but the applicant made the choice to present the maximum realistic estimation in order to cover potential future activities.

Hence, the excess risk previously presented can be considered as the maximum consideration, taking into account all uncertainties.

Furthermore, the compliance with the operating conditions described in this CSR will be periodically controlled and the efficiency of the risk management measures (mainly ventilations and RPE) will be regularly verified according to a written procedure for the site. New protective equipment is available for all workers in order to maintain the possibility to change them easily.

All workers involved are made aware of the best practices of work to ensure that the level of exposure is as low as possible. They are also trained adequately to the identification of the hazardous substances and associated practices through a formal education procedure.

The applicant will furthermore perform measurements adapted to the contributing scenarios in order to confirm that the measured level of exposure will be lower than the levels estimated in this CSR by modelling approach. Consequently, measurement at the workplace will be regularly performed in order to verify the main raw exposures estimated with the modelling approach.

11 References

ECHA (European Chemicals Agency), *Guidance on information requirements and chemical safety assessment. Chapter R14: Occupational exposure estimation.* 2012; Version 2.1; Ref ECHA-2010-G-09-EN

http://echa.europa.eu/documents/10162/13632/information_requirements_r14_en.pd <u>f</u>

European Union Risk Assessment Report on hexavalent chromium substances (Volume 53 3rd priority list)

https://echa.europa.eu/documents/10162/3be377f2-cb05-455f-b620-af3cbe2d570b

INERIS - Fiche de données toxicologiques et environnementales du chrome et de ses dérivés

https://substances.ineris.fr/fr/substance/getDocument/2739

EPA Ground Water Issue, Natural Attenuation of Hexavalent Chromium in Groundwater and Soils, EPA154015-941505, 1994

https://www.epa.gov/remedytech/natural-attenuation-hexavalent-chromiumgroundwater-and-soils

EU RAR (European Union Risk Assessment Report); *Chromium trioxide, Sodium chromate, sodium dichromate, ammonium dichromate and potassium dichromate Risk Assessment.* 3rd priority list volume 53. 2005 http://echa.europa.eu/documents/10162/3be377f2-cb05-455f-b620-af3cbe2d570b

Technical Guidance Document on risk assessment, part II about environmental risk assessment. 2003 Doury et al., Abaques d'evaluation directe des transferts atmospheriques d'effluents gazeux. 1980. https://inis.iaea.org/collection/NCLCollectionStore/_Public/19/017/19017287.pdf

National Institute for Occupational Safety and Health, Occupational Safety and Health Administration Request for information Occupational Exposure to Hexavalent Chromium (CrVI); September 2013 2013_128.pdf

ECHA Guidance on information requirements and chemical safety assessment, chapter R8, Appendix R. 8-14 page 141. R8, Appendix R. 8-14 page 140 <u>https://echa.europa.eu/</u>

Annex

Annex I Advanced Reach Tool (ART) Reports

The version of the modelling tool: ART (Advanced REACH Tool) version 1.5

Annex I.I ART Report - Initial Make Up of Solution

ART REPORT – Initial make up of solution – 06-Feb-25

Making up of new process solution

Chemical details	
Chemical	Chromium Trioxide
CAS No.	1333-82-0
Scenario details	
Number of activities	1
Total duration (mins)	30
Nonexposure period (mins)	0
Metadata	
ART version	1.5
Creator	
Date created	06-Feb-25
Date last edited	01-Jan-01

Details for Activity S	olution Make up from new		
Emission sources:	Near field	Duration (mins):	30
	Far field 🧹		
Far-field exposure			
Operational Condition	ons		
Substance emission po	otential		
Substance product typ	e	Liquids	
Process temperature		Room temperature	
Vapour pressure		11 Pa	
Liquid mole fraction		Minor	
Activity coefficient		1	
Activity emission poter	ntial		
Activity class		Falling liquids	
Situation		Transfer of liquid produc	t with flow of 1 - 10 l/minute
Containment level		Open process	
Loading type		Splash loading, where th the reservoir and the liqu	e liquid dispenser remains at the top of uid splashes freely
Surface contamination			
Process fully enclosed?	•	No	
Effective housekeeping	practices in place?	Yes	
Dispersion			
Work area		Indoors	
Room size		3000 m³	
Risk Management M	easures		
Localised controls			
Primary		Fixed capturing hood (90	0.00 % reduction)
Secondary		No localized controls (0.	00 % reduction)
Segregation		No segregation (0.00 %	reduction)
Personal enclosure		No personal enclosure (C	0.00 % reduction)
Dispersion			
Ventilation rate		3 air changes per hour (ACH)

Predicted exposure levels

ART predicts air concentrations in a worker's personal breathing zone outside of any Respiratory Protection Equipment (RPE). The use of RPE must be considered separately.

Mechanistic model results

The predicted 90th percentile full-shift exposure is 0.0003 mg/m³.

The 90% confidence interval is 0.000055 mg/m3 to 0.0021 mg/m3.

Annex I.II ART Report - Dipping Connector Parts into Passivate

ART REPORT – Dipping connector parts into passivate – 12-Feb-25

parts immersed in passivate solution to achieve required surface finish

Chemical details	
Chemical	Chromium Trioxide
CAS No.	1333-82-0
Scenario details	
Number of activities	1
Total duration (mins)	60
Nonexposure period (mins)	0
Metadata	
ART version	1.5
Creator	
Date created	12-Feb-25
Date last edited	01-Jan-01

Details for Activity dipping parts into passivate solution

Emission sources:	Near field	Duration (mins):	60
	Far field 🧹		
Far-field exposure			
Operational Condition	ons		
Substance emission po	otential		
Substance product typ	e	Liquids	
Process temperature		Room temperature	
Vapour pressure		11 Pa	
Liquid mole fraction		Minor	
Activity coefficient		1	
Activity emission poter	ntial		
Activity class		Activities with agitated su	rfaces
Situation		Open surface 0.3 - 1 m ²	
Surface contamination	1		
Process fully enclosed	?	No	
Effective housekeeping	g practices in place?	Yes	
Dispersion			
Work area		Indoors	
Room size		3000 m³	
Risk Management M	easures		
Localised controls			
Primary		Fixed capturing hood (90.	00 % reduction)
Secondary		No localized controls (0.00	0 % reduction)
Segregation		No segregation (0.00 % r	reduction)
Personal enclosure		No personal enclosure (0.	00 % reduction)
Dispersion			
Ventilation rate		3 air changes per hour (A	CH)

Predicted exposure levels

ART predicts air concentrations in a worker's personal breathing zone outside of any Respiratory Protection Equipment (RPE). The use of RPE must be considered separately.

Mechanistic model results

The predicted 90th percentile full-shift exposure is 0.0033 mg/m³.

The inter-quartile confidence interval is 0.0016 mg/m³ to 0.007 mg/m³.

Annex I.III ART Report - Sampling Vat for Analysis

ART REPORT - Sampling bath for analysis - 06-Feb-25

A small amount (typically 100 ml) of the mixture is taken from the process vat in order to perform a titration to determine the Chrome level

Chemical details	
Chemical	Chromium Trioxide
CAS No.	1333-82-0
Scenario details	
Number of activities	1
Total duration (mins)	2
Nonexposure period (mins)	0
Metadata	
ART version	1.5
Creator	
Date created	06-Feb-25
Date last edited	01-Jan-01

Details for Activity (untitled)sampling			
Emission sources:	Near field 🧹	Duration (mins):	2
	Far field		
Near-field exposure			
Operational Condition	ons		
Substance emission po	otential		
Substance product typ	e	Liquids	
Process temperature		298 K	
Vapour pressure		11 Pa	
Liquid mole fraction		Minor	
Activity coefficient		1	
Activity emission poter	ntial		
Activity class		Falling liquids	
Situation		Transfer of liquid product	with flow of < 0.1 l/minute
Containment level			ntact between product and adjacent air. de processes that are fully contained next questions).
Loading type		Splash loading, where the the reservoir and the liqui	e liquid dispenser remains at the top of id splashes freely
Surface contamination	1		
Process fully enclosed	?	No	
Effective housekeeping	g practices in place?	Yes	
Dispersion			
Work area		Indoors	
Room size		3000 m³	
Risk Management M	leasures		
Localised controls			
Primary		Fixed capturing hood (90.	.00 % reduction)
Secondary		No localized controls (0.0	0 % reduction)
Dispersion			
Ventilation rate		3 air changes per hour (A	CH)

Predicted exposure levels

ART predicts air concentrations in a worker's personal breathing zone outside of any Respiratory Protection Equipment (RPE). The use of RPE must be considered separately.

Mechanistic model results

The predicted 75th percentile full-shift exposure is 0.00018 mg/m³.

The inter-quartile confidence interval is 0.000089 mg/m³ to 0.00035 mg/m³.

Annex I.IV ART Report - Lab Analysis

ART REPORT - Lab Analysis - 06-Feb-25

Titration of sample to determine Chrome content

Chemical details	
Chemical	Chromium Trioxide
CAS No.	1333-82-0
Scenario details	
Number of activities	1
Total duration (mins)	10
Nonexposure period (mins)	0
Metadata	
ART version	1.5
Creator	
Date created	06-Feb-25
Date last edited	01-Jan-01

Details for Activity Volumetric Analysis	
Emission sources: Near field 🖌	Duration (mins): 10
Far field	
Near-field exposure	
Operational Conditions	
Substance emission potential	
Substance product type	Liquids
Process temperature	293 К
Vapour pressure	11 Pa
Liquid mole fraction	Minor
Activity coefficient	1
Activity emission potential	
Activity class	Activities with relatively undisturbed surfaces (no aerosol formation)
Situation	Open surface < 0.1 m ²
Surface contamination	
Process fully enclosed?	No
Effective housekeeping practices in place?	Yes
Dispersion	
Work area	Indoors
Room size	100 m ³
Risk Management Measures	
Localised controls	
Primary	No localized controls (0.00 % reduction)
Secondary	No localized controls (0.00 % reduction)
Dispersion	
Ventilation rate	Only good natural ventilation

Predicted exposure levels

ART predicts air concentrations in a worker's personal breathing zone outside of any Respiratory Protection Equipment (RPE). The use of RPE must be considered separately.

Mechanistic model results

The predicted 75th percentile full-shift exposure is 0.035 mg/m³.

The inter-quartile confidence interval is 0.018 mg/m³ to 0.068 mg/m³.

Annex I.V ART Report - Decanting of Chemical

ART REPORT - Decanting of Chemical - 06-Feb-25

Transferring chemical from 25I drum to 2I jug for additions

Chromium Trioxide
1333-82-0
1
5
0
1.5
06-Feb-25
01-Jan-01

Details for Activity	Transfer of chemicals to jug		
Emission sources:	Near field 🧹	Duration (mins):	5
	Far field		
Near-field exposure	2		
Operational Conditi	ions		
Substance emission p	otential		
Substance product ty	pe	Liquids	
Process temperature		293 K	
Vapour pressure		11 Pa	
Liquid mole fraction		Minor	
Activity coefficient		1	
Activity emission pote	ential		
Activity class		Activities with relatively formation)	undisturbed surfaces (no aerosol
Situation		Open surface 0.1 – 0.3	m²
Surface contamination	n		
Process fully enclosed	?	No	
Effective housekeepin	g practices in place?	Yes	
Dispersion			
Work area		Indoors	
Room size		3000 m³	
Risk Management N	leasures		
Localised controls			
Primary		Fixed capturing hood (9	0.00 % reduction)
Secondary		No localized controls (0	.00 % reduction)
Dispersion			
Ventilation rate		3 air changes per hour	(ACH)

Predicted exposure levels

ART predicts air concentrations in a worker's personal breathing zone outside of any Respiratory Protection Equipment (RPE). The use of RPE must be considered separately.

Mechanistic model results

The predicted 90th percentile full-shift exposure is 0.0033 mg/m³.

The 90% confidence interval is 0.0006 mg/m³ to 0.023 mg/m³.

Annex I.VI ART Report - Making Additions to Vat Based on Analysis (Maintenance)

ART REPORT - Making additions to vat based on analysis - 06-Feb-25

Making up process solution to optimum operating level based on analysis of solution

Chemical details	
Chemical	Chromium Trioxide
CAS No.	1333-82-0
Scenario details	
Number of activities	1
Total duration (mins)	10
Nonexposure period (mins)	0
Metadata	
ART version	1.5
Creator	
Date created	06-Feb-25
Date last edited	01-Jan-01

Emission sources:	Near field 🖌 Far field	Duration (mins):	10
Near-field exposure			
Operational Condition	15		
Substance emission pot	ential		
Substance product type		Liquids	
Process temperature		Room temperature	
Vapour pressure		11 Pa	
Liquid mole fraction		Minor	
Activity coefficient		1	
Activity emission potent	tial		
Activity class		Activities with agitated su	irfaces
Situation		Open surface 0.3 - 1 m ²	
Surface contamination			
Process fully enclosed?		No	
Effective housekeeping	practices in place?	Yes	
Dispersion			
Work area		Indoors	
Room size		3000 m³	
Risk Management Me	asures		
Localised controls			
Primary		Fixed capturing hood (90	.00 % reduction)
Secondary		No localized controls (0.0	0 % reduction)
Dispersion			
Ventilation rate		3 air changes per hour (A	CH)

Predicted exposure levels

ART predicts air concentrations in a worker's personal breathing zone outside of any Respiratory Protection Equipment (RPE). The use of RPE must be considered separately.

Mechanistic model results

The predicted 90th percentile full-shift exposure is 0.033 mg/m³.

Details for Activity additions of chemicals to process tank

The 90% confidence interval is 0.0059 mg/m³ to 0.23 mg/m³.

Annex I.VII ART Report - Dipping Parts into Rinse Water After Passivation

ART REPORT - Dipping parts into rinse water after passivation - 12-Feb-25

Parts dipped into water rinse to remove residual chemicals from passivate

Chemical details	
Chemical	Chromium Trioxide
CAS No.	1333-82-0
Scenario details	
Number of activities	1
Total duration (mins)	5
Nonexposure period (mins)	0
Metadata	
ART version	1.5
Creator	
Date created	12-Feb-25
Date last edited	01-Jan-01

Details for Activity Rinsing of par	after passivation
Emission sources: Near field	Duration (mins): 5
Far field ,	
Far-field exposure	
Operational Conditions	
Substance emission potential	
Substance product type	Liquids
Process temperature	Room temperature
Vapour pressure	11 Pa
Liquid mole fraction	Extremely small
Activity coefficient	1
Activity emission potential	
Activity class	Activities with relatively undisturbed surfaces (no aerosol formation)
Situation	Open surface 0.3 - 1 m ²
Surface contamination	
Process fully enclosed?	No
Effective housekeeping practices in p	ice? Ves
Dispersion	
Work area	Indoors
Room size	3000 m³
Risk Management Measures	
Localised controls	
Primary	No localized controls (0.00 % reduction)
Secondary	No localized controls (0.00 % reduction)
Segregation	No segregation (0.00 % reduction)
Personal enclosure	No personal enclosure (0.00 % reduction)
Dispersion	
Ventilation rate	3 air changes per hour (ACH)

Predicted exposure levels

ART predicts air concentrations in a worker's personal breathing zone outside of any Respiratory Protection Equipment (RPE). The use of RPE must be considered separately.

Mechanistic model results

The predicted 75th percentile full-shift exposure is 0.00024 mg/m³.

The inter-quartile confidence interval is 0.00012 mg/m³ to 0.00047 mg/m³.

Annex I.VIII ART Report - Drying of Components

ART REPORT - drying of components - 06-Feb-25

Drying of components following plating process

Chemical details	
Chemical	Chromium Trioxide
CAS No.	1333-82-0
Scenario details	
Number of activities	1
Total duration (mins)	5
Nonexposure period (mins)	0
Metadata	
ART version	1.5
Creator	
Date created	06-Feb-25
Date last edited	01-Jan-01

Details for Activity	(untitled)		
Emission sources:	Near field 🧹	Duration (mins):	5
	Far field		
Near-field exposure	1		
Operational Conditi	ons		
Substance emission p	otential		
Substance product typ	pe	Liquids	
Process temperature		Room temperature	
Vapour pressure		11 Pa	
Liquid mole fraction		Extremely small	
Activity coefficient		1	
Activity emission pote	entia/		
Activity class		Handling of contaminat	ed objects
Situation		Activities with treated/o	contaminated objects (surface 0.3-1 m²)
Contamination level		Contamination > 90 %	of surface
Surface contamination	7		
Process fully enclosed	?	No	
Effective housekeepin	g practices in place?	Yes	
Dispersion			
Work area		Indoors	
Room size		3000 m³	
Risk Management M	leasures		
Localised controls			
Primary		No localized controls (0	.00 % reduction)
Secondary		No localized controls (0	.00 % reduction)
Dispersion			
Ventilation rate		3 air changes per hour	(ACH)

Predicted exposure levels

ART predicts air concentrations in a worker's personal breathing zone outside of any Respiratory Protection Equipment (RPE). The use of RPE must be considered separately.

Mechanistic model results

The predicted 90th percentile full-shift exposure is 0.004 mg/m^3 .

The 90% confidence interval is 0.00072 mg/m³ to 0.028 mg/m³.

Annex I.IX ART Report - Discharge of Waste Solution

ART REPORT - Discharge of waste solution - 06-Feb-25

Pumping out of process tank when solution needs changing

Chemical details	
Chemical	Chromium Trioxide
CAS No.	1333-82-0
Scenario details	
Number of activities	1
Total duration (mins)	15
Nonexposure period (mins)	0
Metadata	
ART version	1.5
Creator	
Date created	06-Feb-25
Date last edited	01-Jan-01

Details for Activity Pumping out of used solution	
Emission sources: Near field	Duration (mins): 15
Far field 🖌	
Far-field exposure	
Operational Conditions	
Substance emission potential	
Substance product type	Liquids
Process temperature	Room temperature
Vapour pressure	11 Pa
Liquid mole fraction	Minor
Activity coefficient	1
Activity emission potential	
Activity class	Falling liquids
Situation	Transfer of liquid product with flow of 10 - 100 l/minute
Containment level	Handling that reduces contact between product and adjacent air. Note: This does not include processes that are fully contained by localised controls (see next questions).
Loading type	Splash loading, where the liquid dispenser remains at the top of the reservoir and the liquid splashes freely
Surface contamination	
Process fully enclosed?	No
Effective housekeeping practices in place?	Ves
Dispersion	
Work area	Indoors
Room size	3000 m³
Risk Management Measures	
Localised controls	
Primary	Fixed capturing hood (90.00 % reduction)
Secondary	No localized controls (0.00 % reduction)
Segregation	No segregation (0.00 % reduction)
Personal enclosure	No personal enclosure (0.00 % reduction)
Dispersion	
Ventilation rate	3 air changes per hour (ACH)

Predicted exposure levels

ART predicts air concentrations in a worker's personal breathing zone outside of any Respiratory Protection Equipment (RPE). The use of RPE must be considered separately.

Mechanistic model results

The predicted 90th percentile full-shift exposure is 0.0003 mg/m³.

The 90% confidence interval is 0.000054 mg/m³ to 0.0021 mg/m³.

Annex I.X ART Report - Operators in Work Area Not Associated with Chrome Passivate Process

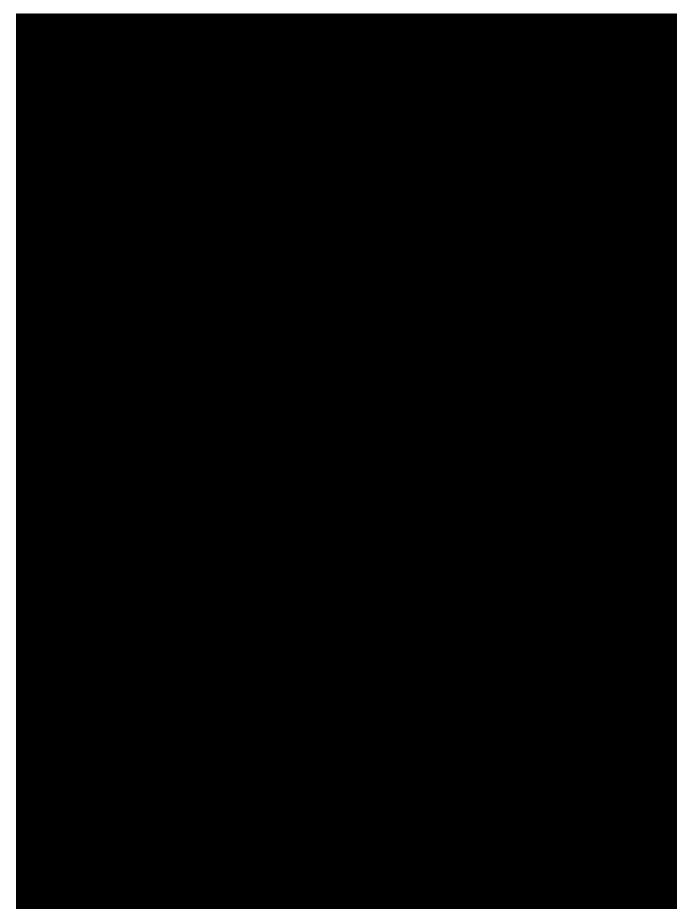
ART REPORT – Operators in work area not associated with chrome passivate process – 10-Feb-25

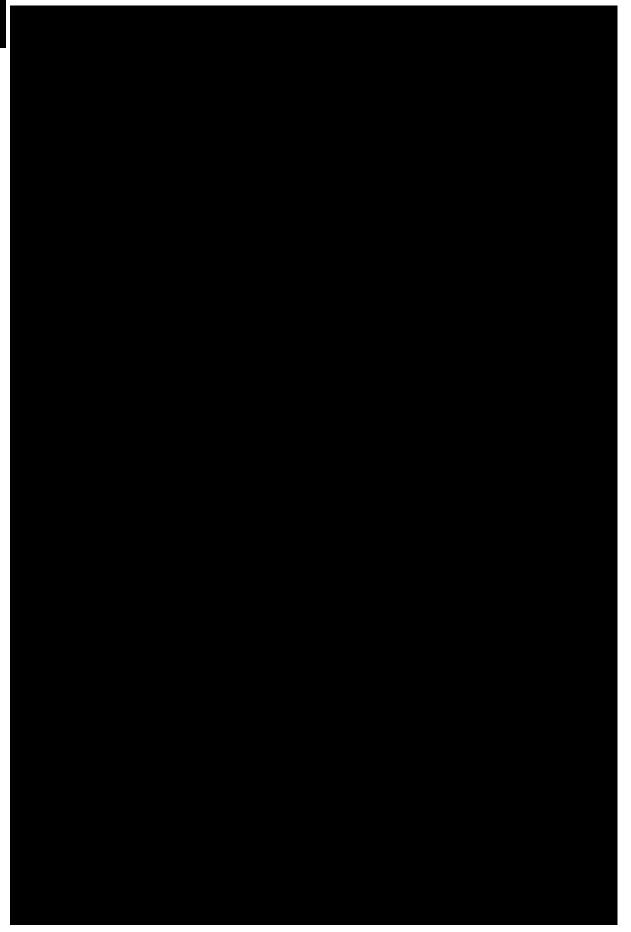
Various operators employed in the department completing tasks not associated with hexavalent chrome

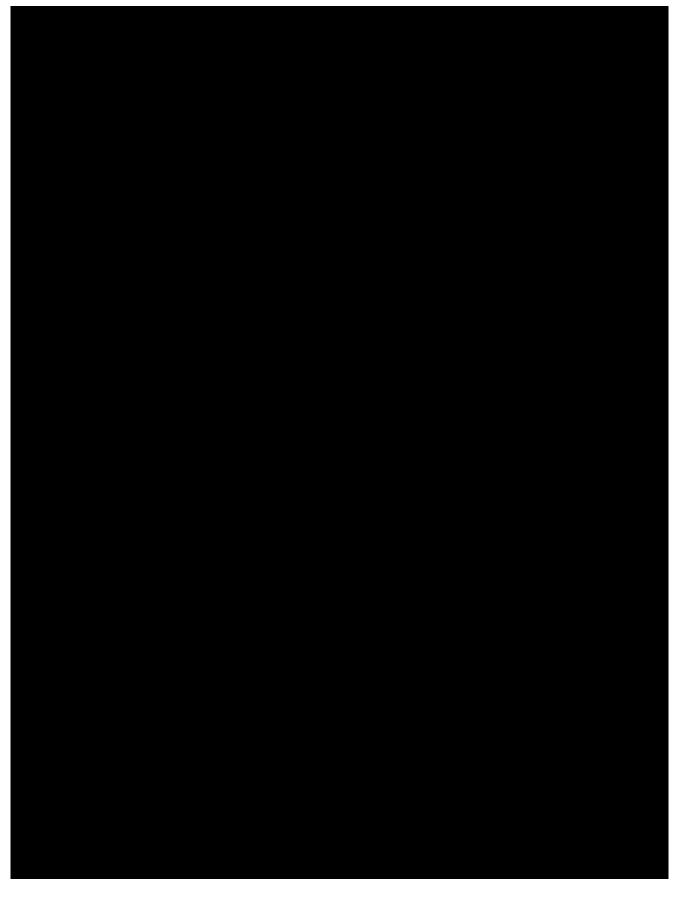
Chemical details	
Chemical	Chromium Trioxide
CAS No.	1333-82-0
Scenario details	
Number of activities	1
Total duration (mins)	480
Nonexposure period (mins)	0
Metadata	
ART version	1.5
Creator	
Date created	10-Feb-25
Date last edited	01-Jan-01

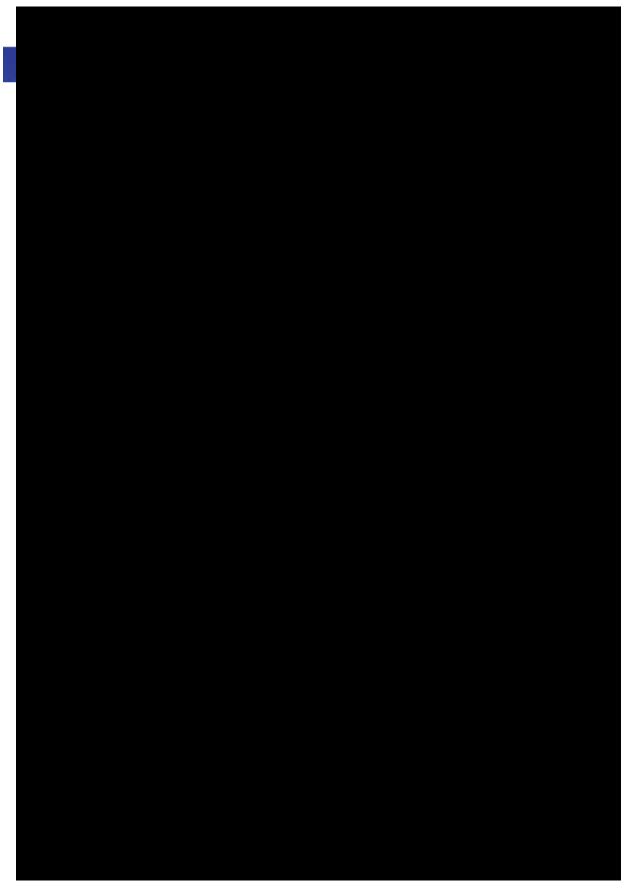
Emission sources:	Near field Far field 🖌	Duration (mins):	480
Far-field exposure			
Operational Condition	15		
Substance emission pot	ential		
Substance product type		Liquids	
Process temperature		Room temperature	
Vapour pressure		11 Pa	
Liquid mole fraction		Minor	
Activity coefficient		1	
Activity emission potent	tial		
Activity class		Activities with agitated su	irfaces
Situation		Open surface 0.3 - 1 m²	
Surface contamination			
Process fully enclosed?		No	
Effective housekeeping	practices in place?	Yes	
Dispersion			
Work area		Indoors	
Room size		3000 m³	
Risk Management Measures			
Localised controls			
Primary		Fixed capturing hood (90	.00 % reduction)
Secondary		No localized controls (0.0	0 % reduction)
Segregation		No segregation (0.00 %	reduction)
Personal enclosure		No personal enclosure (0	.00 % reduction)
Dispersion			
Ventilation rate		3 air changes per hour (A	CH)

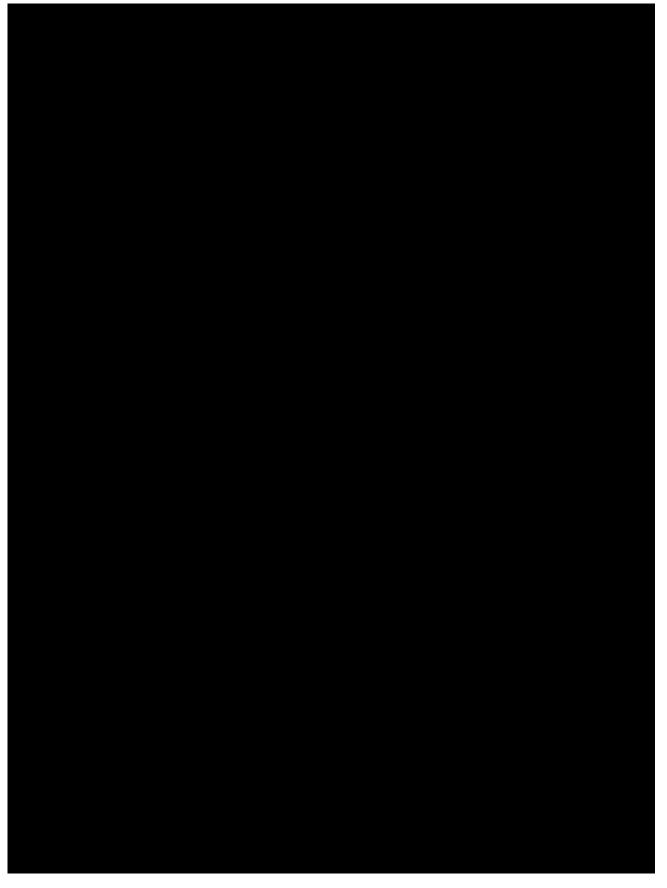
Details for Activity Other operators working in department not associated directly with hexavalent chrome process

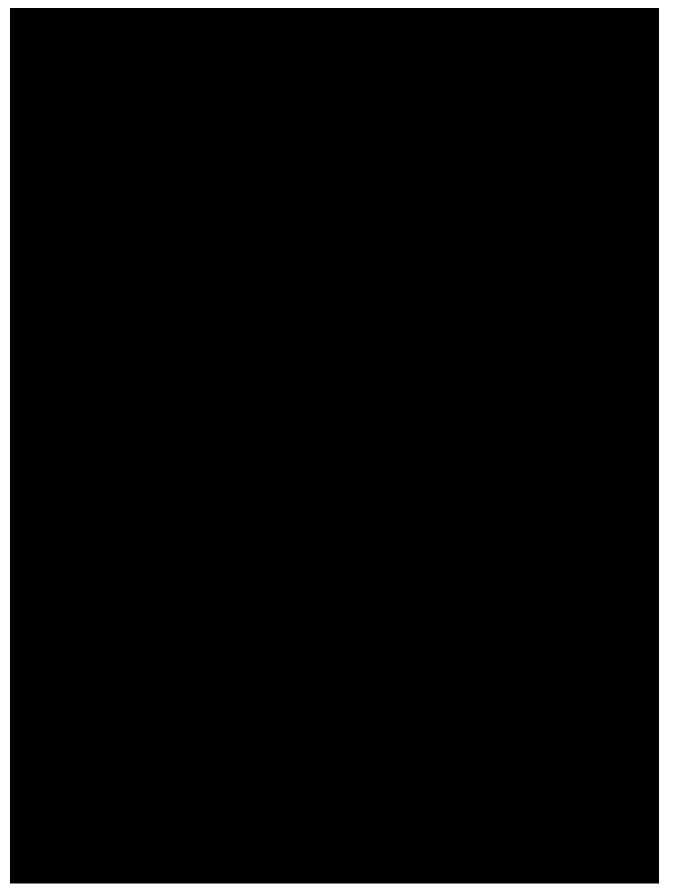

Predicted exposure levels


ART predicts air concentrations in a worker's personal breathing zone outside of any Respiratory Protection Equipment (RPE). The use of RPE must be considered separately.


Mechanistic model results


The predicted 90th percentile full-shift exposure is 0.0034 mg/m³.


The 90% confidence interval is 0.0006 mg/m³ to 0.023 mg/m³.



Annex III LEV Test Results (Survey October 2024)

REPORT OF THOROUGH EXAMINATION AND TEST OF LOCAL EXHAUST VENTILATION (LEV) PLANT

Policy: HBL0064632	Plant Code: D04F11		031023-004-0071EMO	A Nunich Re compar
Site: 00005	Schedule: D00 70	Date Issued: Report Number:	26 Oct 2024 261024-006-0076EMO	LEV3A
1. Name of company	T T ELECTRONICS PLC AB CONNECTORS LTD	& SUBSIDIARY COS		
2. Address	Ynysboeth Factory Es Mountain Ash, Mid Glu CF45 4SF	tate, Abercynon, amorgan		
3a. Identification of LEV plant	Pume Extraction Plan Linel Plant No.:- LEV2	t	_	
3b. Is this unchanged from initial record?	No initial records o	r commissioning repor	ts available.	
4. Location of LEV plant	Dipping and Plating	Shop		
5a. Identification of process	De-greasing of compo	nents.		
5b. Is this unchanged from initial record?	No initial records o	r commissioning repor	ts available.	
6a. Hazardous substance(s)	See Plant Report Con	timution		
6b. Is this unchanged from initial record?	See Plant Report Con	tinuation		
7. Regulations applicable	Control of Substance	B Hazardous to Health	Regulations 2002: Reg	1. 9
 Condition at time of examination and test 	Normal operation.			
 Does the LEV control the hazardous substance(s)? 	Observational method substance(s).	s confirm visual cont	rol of the hazardous	
10. Method used to make judgment at 9 al (e.g. visual, air flow, static pressure, e)ke test.		
11. Condition of filter(s)	Fully enclosed, no a	CCes8.		
12. Are the elements of the LEV plant in good working order?	Yes			
 Repairs/modifications required to ensu the LEV plant effectively controls the hazardous substance(s) 	None.			
14. Intended operating performance	See Plant Report Con	tinuation		
15. Observations/notes	See Plant Report Con	tinuation		

Number of extraction points: 13

Number to be used at any one time: 10

I certify that on the date stated, I thoroughly examined & tested the plant specified above & the results of my examination & test(s) are as shown.

Date of Examination: 24 Oct 2024 Competent Person:

Signature:

HSB Engineering Insurance Services Limited Registered in England and Wales: 03010292, Chancery Place, 50 Brown Street, Manchester M2 2JT. Registered as a branch in Ireland: 906105 28 Windsor Place, Lower Pembroke Street, Dublin 2

Telephone: 0845 345 5510 HSB Engineering Insurance Services Limited is accredited by the United Kingdom Accreditation Service

Date of Last Examination: 28 Sep 2023

Date of Next Examination: 24 Oct. 2025

REPORT OF THOROUGH EXAMINATION AND TEST OF LOCAL EXHAUST VENTILATION (LEV) PLANT

71EMO A Munich Re compar 76EMO LEV3B
uct Volume ocity Flow (m/s) (m ³ /s)
ve 21.2 0.365
D.471
0.392
0.268
0.328
0.323
0.453
0.533
0.107
0.368
10 ()))

Reference of arrangement/layout drawing(s) which identify the plant:

I certify that on the date stated, I thoroughly examined & tested the plant specified above & the results of my examination & test(s) are as shown.

Date of Examination: 24 Oct 2024

Competent Person: Signature:

Date of Next Examination: 24 Oct 2025

Qualification: Engineer Surveyor

Date of Last Examination: 28 Sep 2023

HSB Engineering Insurance Services Limited Registered in England and Wales: 03010292, Chancery Place, 50 Brown Street, Manchester M2 2JT Registered as a branch in Ireland'906105 28 Windsor Place, Lower Pembroke Street, Dublin 2

Telephone: 0845 345 5510 HSB Engineering Insurance Services Limited is accredited by the United Kingdom Accreditation Service

REPORT OF THOROUGH EXAMINATION AND TEST OF LOCAL EXHAUST VENTILATION (LEV) PLANT

031023-007-0071ENO	A Munich Re compa			
26 Oct 2024 261024-009-0076EMO	LEV3A			
201024-003-0076540	LL 4 57			
ts available.				
ts available.				
Paint and solvent fumes containing, but not limited to, xylene, toluene, isocyanates etc.				
ts available.				
Regulations 2002: Reg.	9			
rol of the hazardous urther information.				
er information.				
missing. Repair				

Number of extraction points: 9

Number to be used at any one time: 9

I certify that on the date stated, I thoroughly examined & tested the plant specified above & the results of my examination & test(s) are as shown.

Date of Examination: 25 Oct 2024

Signature:

HSB Engineering Insurance Services Limited

Telephone: 0845 345 5510 HSB Englineering Insurance Services Limited Is accredited by the United Kingdom Accreditation Service Registered in England and Wales: 03010292, Chancery Place, 50 Brown Street, Manchester M2 2JT Registered as a branch in Ireland: 906105 28 Windsor Place, Lower Pembroke Street, Dublin 2

Date of Last Examination: 28 Sep 2023

Date of Next Examination: 25 Oct 2025

REPORT OF THOROUGH EXAMINATION AND TEST OF LOCAL EXHAUST VENTILATION (LEV) PLANT

Policy: HBL0064632 Site: 00005		Plant Cod Schedule:			Date Issued:	26 Det 2 ber: 261024-0	024	A Munich Re company
1. Name of company			T ELECTRONIC B CONNECTORS		BSIDIARY COS			
2. Address		M	nysboeth Fact Duntain Ash, F45 4SF					
3. Identification of LE	V plant		ume Extractio lant No.:- LE					
Test Point	Static Pressure (Pa)	Face Dimensions (mm)	Duct Dimensions (mm)	Area (m²)	Capture Velocity (m/s)	Face Velocity (m/s)	Duct Velocity (m/s)	Volume Flow (m ³ /s)
Hot Rinse		550x40		0.022		Ave 9.3		0.205
Passive	2000	550x40		0.022		Ave 6.8		0.15
Hot soak		550x40		0.022		Ave4.1		0.09
Cold Rinse		550x40		0.022		Ave 9.7		0.213
Silver plate	4.4.5	550x40		0.022		Ave 8.6		0.189
Cyanide dip		550x40		0.022		Ave8.3	1.5	0.183
Gold plate	1	550x40		0.022		Ave 12.7		0.279
Bright Nickel		550x40		0.023		Ave 7.1		0.156

Reference of arrangement/layout drawing(s) which identify the plant:

I certify that on the date stated, I thoroughly examined & tested the plant specified above & the results of my examination & test(s) are as shown.

Date of Examination: 25 Oct 2024

Competent Person:

Signature:

HSB Engineering Insurance Services Limited Registered in England and Wales: 03010292, Chancery Place. 50 Brown Street, Manchester M 2 2JT Registered as a branch in Ireland: 906105 28 Windsor Place, Lower Pembroke Street, Dublin 2 Telephone: 0845 345 5510 HSB Engineering Insurance Services Limited is accredited by the United Kingdom Accreditation Service

Date of Last Examination: 28 Sep 2023

Date of Next Examination: 25 Oct 2025

REPORT OF THOROUGH EXAMINATION AND TEST OF LOCAL EXHAUST VENTILATION (LEV) PLANT

Policy: HELUU64632	Plant Gode: D04D11		ich //e compa
Site: 00005	Schedule: D0072	Date Issued: 26 Oct 2024 Report Number: 261024-012-0076BMO	LEV3A
1. Name of company	T T ELECTRONIC AB CONNECTORS	CS PLC & SUBSIDIARY COS : LTD	
2. Address		tory Batate, Abercynon, Mid Glamorgan	
3a. Identification of LEV plant	Fume Extraction Scrubber Flant No.:- Li		
3b. Is this unchanged from initial record	No initial rea	cords or commissioning reports available.	
4. Location of LEV plant	Dipping and pl	ating shop	
5a. Identification of process	De-greasing of	of components.	
5b. Is this unchanged from initial record?	No initial rec	cords or commissioning reports available.	
6a. Hazardous substance(s)	Paint and solv toluene, isocy	vent fumes containing, but not limited to, xylene, syanates etc.	
6b. Is this unchanged from initial record	No initial rea	cords or commissioning reports available.	
7. Regulations applicable	Control of Sul	ubstances Hazardous to Health Regulations 2002: Reg. 9	
 Condition at time of examination and test 	Normal operation	ion.	
 Does the LEV control the hazardous substance(s)? 	Observational Substance(s).	methods confirm visual control of the hazardous	
10. Method used to make judgment at 9 a (e.g. visual, air flow, static pressure,		low & smoke test.	
11. Condition of filter(s)	Şcrubber.		
12. Are the elements of the LEV plant in good working order?	Yes		
13. Repairs/modifications required to ent the LEV plant effectively controls the hazardous substance(s)	sure None .	~	
14. Intended operating performance	See Plant Repo	port Continuation	
15. Observations/notes	See Plant Repo	nort Continuation	

Number of extraction points: 7

Number to be used at any one time: 5

I certify that on the date stated, I thoroughly examined & tested the plant specified above & the results of my examination & test(s) are as shown.

Date of Examination: 25 Oct. 2024

Signature:

HSB Engineering Insurance Services Limited Registered in England and Wales: 03010292, Chancery Place, 50 Brown Street, Manchester M2 2JT Registered as a branch in Ireland: 906105 28 Windsor Place, Lower Pembroke Street, Dublin 2 Date of Next Examination: 25 Oct 2025 Qualification: Engineer Surveyor

Date of Last Examination: 28 Sep 2023

Telephone: 0845 345 5510 HSB Engineering Insurance Services Limited is accredited by the United Kingdom Accreditation Service

Page 86 of 93

REPORT OF THOROUGH EXAMINATION AND TEST OF LOCAL EXHAUST VENTILATION (LEV) PLANT

Policy: HBL0064632	Plant Code: D04D11	Previous Report: 031023-010-0071ENO	A Munich Re company
Site: 00005	Schedule: D0072	Date Issued: 26 Oct 2024 Report Number: 261024-013-0076ENO	LEV3B
1. Name of company	T T ELECTRONICS PI AB CONNECTORS LTD	LC & SUBSIDIARY COS	
2. Address	Ynysboeth Factory Mountain Ash, Mid CF45 4SF	Estate, Abercynon, Glamorgan	
3. Identification of LEV plant	Fume Extraction P. Scrubber Plant No.:- LEV4	lant	
T	- Post	Auto Cardina Face David	Maluma

	Point	Pressure (Pa)	Dimensions (mm)	Dirensions (mm)	(m ²)	Velocity (m/s)	Velocity (m/s)	Velocity (m/s)	Flow (m ³ /s)
F	1 scr jigstrip		430x40		0.0172		19.6		0337
F	2 scr		1380x40		0.0552		Ave 7.1	-	0.392
F	3 scr		430x40		00172		Ave 16.3		.028
F	4 scr		2050x40		0.082		Ave 7.2		0.59
F	5 scr		1950x50		0.0975		Ave 10.7		1.043

Reference of arrangement/layout drawing(s) which identify the plant:

I certify that on the date stated, I thoroughly examined & tested the plant specified above & the results of my examination & test(s) are as shown.

Date of Examination: 25 Oct 2024

6 Signature: HSB Engineering Insurance Services Limited

Registered in England and Wales: 03010292, Chancery Place, 50 Brown Street, Manchester M2 2JT Registered as a branch in Ireland: 906105 28 Windsor Place, Lower Pernbroke Street, Dublin 2

Date of Next Examination: 25 Oct. 2025 Qualification: Engineer Surveyor

Date of Last Examination: 28 Sep 2023

Telephone: 0845 345 5510 HSB Engineering Insurance Services Limited is accredited by the United Kingdom Accreditation Service

REPORT OF THOROUGH EXAMINATION AND TEST OF LOCAL EXHAUST VENTILATION (LEV) PLANT

Policy: HBL0064632 Plan	t Code: D04B11	Previous Report: 031023-013-0071EMO Date Issued: 26 Oct 2024	A Munich Re comp
Site: 00005 Sch	edule: D0073	Report Number: 261024-015-0076EHO	LEV3/
1. Name of company	T T ELECTRONICS F AB CONNECTORS LTD	LC & SUBSIDIARY COS	
2. Address	Ynysboeth Factory Mountain Ash, Mid CF45 4SF	Estate, Abercynon, Glamorgan	
3a. Identification of LEV plant	Fume Extraction P Plant No.:- LEVS	lant	
3b. Is this unchanged from initial record?	No initial record	s or commissioning reports available.	
4. Location of LEV plant	Plating line 2		
5a. Identification of process	De-greasing of co	mponents.	
5b. Is this unchanged from initial record?	No initial record	s or commissioning reports available.	
6a. Hazardous substance(s)	Paint and solvent toluene, isocyana	fumes containing, but not limited to, xylene, tes etc.	
6b. Is this unchanged from initial record?	No initial record	s or commissioning reports available.	
7. Regulations applicable	Control of Substa	nces Hazardous to Health Regulations 2002: Reg	. 9
 Condition at time of examination and test 	Normal operation.		
 Does the LEV control the hazardous substance(s)? 	Observational met substance(s).	hods confirm visual control of the hazardous	
10. Method used to make judgment at 9 above (e.g. visual, air flow, static pressure, etc)	Visual, airflow,	smoke test and dust lamp.	
11. Condition of filter(s)	Fully enclosed, n	o accesa.	
12. Are the elements of the LEV plant in good working order?	Yes		
 Repairs/modifications required to ensure the LEV plant effectivel y controls the hazardous substance⊚) 	None .		
14. Intended operating performance	See Plant Report	Continuation	
15. Observations/notes	See Plant Report	Continuation	
Number of extractio	n points: 3	Number to be used at any one time: 3	

It certify that on the date stated, I theroughly examined & tested the plant specified above & the results of my examination & test(s) are as shown.

Telephone: 0845 345 5510 HSB Engineering Insurance Services Limited is accredited by the United Kingdom Accreditation Service

Date of Examination: 25 Oct. 2024

Competent Person: Signature:

HSB Engineering Insurance Services Limited Registered in England and Wales: 03010292, Chancery Place, 50 Brown Street, Manchester M2 2JT Registered as a branch in Ireland: 906105 28 Windsor Place, Lower Pembroke Street, Dublin 2

Qualification: Engineer Surveyor

Date of Last Examination: 28 Sep 2023

Date of Next Examination: 25 Oct 2025

SAFed

REPORT OF THOROUGH EXAMINATION AND TEST OF LOCAL EXHAUST VENTILATION (LEV) PLANT

Policy: HBL0064632		Plant Code			Previous Report Date Issued:	26 Oct	2024	A Nunich Re company
Site: 00005		Schedule:	D0073		Report Number:	261024-	016-0076EMO	LEV3B
1. Name of company			T ELECTRONIC CONNECTORS		SIDIARY COS			
2. Address		Hc.	nysboeth Fact ountain Ash, 745 4SF					
3. Identification of LEV	/ plant		ume Extractio lant No.:- LE					
Test Point	Static Pressure (Pa)	Face Dimensions (mm)	Duct Dimensions (mm)	Area (m²)	Capture Velocity V (m/s)	Face /elocity (m/s)	Duct Velocity (m/s)	Volume Flow (m ³ /s)
Cadmium plate	1.00	1835×50		0.0925		Ave 12.6		1.165
Fl								
Yellow		1835x50		0.0917		Ave 9.8		0.699
passiveF2								
Olive drab F3		1835x35	10 N H	0.064		Ave 11.4		0.73

Reference of arrangement/layout drawing(s) which identify the plant:

I certify that on the date stated. I thoroughly examined & tested the plant specified above & the results of my examination & test(s) are as shown.

Date of Examination: 25 Oct 2024

HSB Engineering Insurance Services Limited Registered in England and Wales: 03010292, Chancery Place, 50 Brown Street, Manchester M2 2JT Registered as a branch in Ireland: 906105 28 Windsor Place, Lower Pembroke Street, Dublin 2 Telephone: 0845 345 5510 HSB Engineering Insurance Services Limited is accredited by the United Kingdom Accreditation Service

Date of Last Examination: 28 Sep 2023

Date of Next Examination: 25 Oct 2025

Qualification: Engineer Surveyor

Page 89 of 93

REPORT OF THOROUGH EXAMINATION AND TEST OF LOCAL EXHAUST VENTILATION (LEV) PLANT

Policy: HBL0064632 Site: 00005	Plant Code: D0 Schedule: D0		Date Issued:	031023-016-0071EMO 26 Oct 2024 261024-018-0076EMO	A Nunich Ra comp		
				201024-010-00700/0	66707		
1. Name of company		LECTRONICS PLC & SUBSI NNBCTORS LTD	DIARY COS				
2. Address		ceth Factory Estate, A ain Ash, Mid Glamorgan 4SF					
3a. Identification of LEV plant	Line	Extraction Plant 3 No.:- LEV6					
3b. Is this unchanged from initial rec	ord? No ini	itial records or commi	ssioning repor	ts available.			
4. Location of LEV plant	Line 3	3					
5a. Identification of process	Extrus	sion.					
5b. Is this unchanged from initial rec	ord? No ini	itial records or commi	ssioning report	rts available.			
6a. Hazardous substance(s)		Paint and solvent fumes containing, but not limited to, xylene, toluene, isocyanates etc.					
6b. Is this unchanged from initial rec	No ini	No initial records or commissioning reports available.					
7. Regulations applicable	Contro	Control of Substances Hazardous to Health Regulations 2002: Reg. 9					
 Condition at time of examination and test 	Normal	Normal operation.					
 Does the LEV control the hazardous substance(s)? 		Observational methods confirm visual control of the hazardous substance(s).					
 Method used to make judgment: (e.g. visual, air flow, static press 		l, airflow & smoke tes	it.				
11. Condition of filter(s)	Fully	enclosed, no access.					
12. Are the elements of the LEV plan good working order?	ntin Yes, 1	but see following sect	ions for furt	her information.			
 Repairs/modifications required t the LEV plant effectively control: the hazardous substance(s) 	s Advis	System requires thorough cleaning. Advise all duct faces are thoroughly cleaned Repair duct flap control knobs on main ducting					
14. Intended operating performance	See P	lant Report Continuati	ion				
15. Observations/notes	Šee P	lant Report Continuati	ion				
Number /	of extraction points:	11 Number	to be used at any	one time: 11			

I certify that on the date stated, I thoroughly examined & tested the plant specified above & the results of my examination & test(s) are as shown.

Date of Examination: 25 Oct 2024

Signature;

HSB Engineering Insurance Services Limited Registered in England and Wales; 03010292, Chancery Place, 50 Brown Street, Manchester M2 2JT Registered as a branch in Ireland; 906105 28 Windsor Place, Lower Pembroke Street, Dublin 2

Qualification: Engineer Surveyor

Date of Last Examination: 28 Sep 2023

Date of Next Examination: 25 Oct 2025

Telephone: 0845 345 5510 HSB Engineering Insurance Services Limited is accredited by the United Kingdom Accreditation Service

REPORT OF THOROUGH EXAMINATION AND TEST OF LOCAL EXHAUST VENTILATION (LEV) PLANT

Policy: HBL0064632 Site: 00005	2	Plant Code Schedule:			Date Issued	port: 031023-0 : 26 Oct 2 ber: 261024-0	024	A Nurrich Recompany
1. Name of compar	γ	T			BSIDIARY COS			
2. Address		Mo	ysboeth Fact xuntain Ash, 745 4SF					
3. Identification of	LEV plant	Li	me Extractio .ne 3 .ant No.:- LE					
Test Point	Static Pressure (Pa)	Face Dimensions (mm)	Duct Dimensions (mm)	Area (m²)	Capture Velocity (m/s)	Face Velocity (m/s)	Duct Velocity (m/s)	Volume Flow (m ³ /s)
Tank 5	0.000	1835×32		0.06		Av 1.3		0.076
Tank 8	Р	1835×32		0.06			Ave 4.9	0.294
Tank 11		1835x50		0.09		Ave 8.9		0.801
Tank 12		1835x50		0.09		Ave 5.8		0.522
Tank 15		1835×42		0.08		Ave 4.8		0.384
Tank 16		1835×42		0.08		Ave 5.8		0.464
Tank 19	10.77	1835×30		0.06		Ave 1.3		0.078
Tank 21		1835×30		0.06		Ave 4.6		0.276
Tank 27		1835x50		0.09		Ave 1.8		0.162
Tank 2B		1835x50		0.09		Ave 6.8		0.612
Tank 33		1835x50		0.09		Ave3.4		0.306

Reference of arrangement/layout drawing(s) which identify the plant:

I certify that on the date stated, I thoroughly examined & tested the plant specified above & the results of my examination & test(s) are as shown.

Date of Examination: 25 Oct 2024

Signature;

HSB Engineering Insurance Services Limited Registered in England and Wales: 03010292, Chaincary Place, 50 Brown Street, Manchester M2 2JT Registered as a branch in ireland '906105 28 Windsor Place, Lower Pembroke Street, Dublin 2

Telephone: 0845 345 5510 HSB Engineering Insurance Services Limited is accredited by the United Kingdom Accreditation Service

Date of Last Examination: 28 Sep 2023

Date of Next Examination: 25 Oct 2025

Qualification: Engineer Surveyor

Page 91 of 93

REPORT OF THOROUGH EXAMINATION AND TEST OF LOCAL EXHAUST VENTILATION (LEV) PLANT

Polic	y: HBL0064632	ant Code: D04A11 Previous Report: 031023	
Site:	00005	chedule: D0075 Date Issued: 26 Oct Report Number: 261024	
1. 1	lame of company	T T ELECTRONICS PLC & SUBSIDIARY COS AB CONNECTORS LTD	
2. /	Address	Ynysboeth Factory Estate, Abercynon, Mountain Ash, Mid Glamorgan CF45 4SF	
3a. I	dentification of LEV plant	Fume Extraction Plant	
		Plant No.:- LEV7	
3b. I	s this unchanged from initial record?	No initial records or commissioning reports available	lable.
4. L	ocation of LEV plant	Dipping and plating shop	
5a. I	dentification of process	Extrusion.	
5b. I	s this unchanged from initial record?	No initial records or commissioning reports avai	lable.
6a. F	lazardous substance(s)	Paint and solvent fumes containing, but not limitoluene, isocyanates etc.	ted to, xylene,
6b. I	s this unchanged from initial record?	No initial records or commissioning reports avai	lable.
. F	Regulations applicable	Control of Substances Hazardous to Health Regula	tions 2002: Reg. 9
	Condition at time of examination and test	Normal operation.	
	Does the LEV control the azardous substance(s)?	Observational methods confirm visual control of substance(s).	the hazardous
	Aethod used to make judgment at 9 ab e.g. visual, air flow, static pressure, et	Ø Visual, airflow & smoke test.	
11. (Condition of filter(s)	No access due to location.	
	Are the elements of the LEV plant in pood working order?	Yes, but see following sections for further info	rmation.
t	Repairs/modifications required to ensu he LEV plant effectively controls he hazardous substance(s)	Advise the fitting of more curtains to system an	ound extraction area
14. 1	ntended operating performance	Face velocity at extraction point(s) Minimum fac m/s	e velocity 0.5-1.0
	Observations/notes	See Plant Report Continuation	

Number of extraction points: 1

Number to be used at any one time: 1

I certify that on the date stated, I thoroughly examined & tested the plant specified above & the results of my examination & test(s) are as shown.

Date of Examination: 25 Oct 2024

Signature:

Date of Last Examination: 28 Sep 2023 Date of Next Examination: 25 Oct 2025

Qualification: Engineer Surveyor

HSB Engineering Insurance Services Limited Registered in England and Wales: 03010292, Chancery Place, 50 Brown Street, Manchester M2 2JT Registered as a branch in Ireland: 906105 28 Windsor Place, Lower Pembroke Street, Dublin 2

Telephone: 0845 345 5510 HSB Engineering Insurance Services Limited is accredited by the United Kingdom Accreditation Service

REPORT OF THOROUGH EXAMINATION AND TEST OF LOCAL EXHAUST VENTILATION (LEV) PLANT

140

0.357

Policy: HBL006463	Plant Code: D04A11 Schedule: D0075			Date Issued	Previous Report: 031023-019-0071EMO Date Issued: 26 Oct 2024 Report Number: 261024-022-0076EMO			
1. Name of compa	ny	т	dule: D0075 Report Number: 261024-022-0076EMO LEV3B T T ELECTRONICS PLC 4 SUBSIDIARY COS AB CONNECTORS LTD					
2. Address		Mo	Ynysboeth Factory Estate, Abercynon, Mountain Ash, Mid Glamorgan CF45 4SF					
3. Identification of	LEV plant		Fume Extraction Plant Plant No.:- LEV7					
Test Point	Static Pressure Di (Pa)	Face mensions (mm)	Duct Dimensions (mm)	Area (m²)	Capture Velocity (m/s)	Face Velocity (m/s)	Duct Velocity (m/s)	Volume Flow (m ³ /s)

0.0154

09 @500

mm

23.2

Reference of arrangement/layout drawing(s) which identify the plant:

I certify that on the date stated, I thoroughly examined & tested the plant specified above & the results of my examination & test(s) are as shown.

Date of Examination: 25 Oct 2024

Competent Person: Signature:

1

HSB Engineering Insurance Services Limited Registered in England and Wales: 03010292, Chancery Place, 50 Brown Street, Manchester M2 2JT Registered as a branch in Ireland; 906105 28 Windsor Place, Lower Pembroke Street, Dublin 2

Telephone: 0845 345 5510 HSB Engineering Insurance Services Limited is accredited by the United Kingdom Accreditation Service

Date of Last Examination: 28 Sep 2023

Date of Next Examination: 25 Oct 2025