

Draft Assessment Report

Evaluation of Active Substances

Plant Protection Products

Prepared according to **Retained Regulation (EC) 1107/2009** as it applies in Great Britain

Prosulfuron

List of Endpoints

GB Amendment Application

Great Britain

September 2023

Version History

Date	Reason for revision
February 2014	LoEP for Prosulfuron from the renewal of approval provided in
	the RAR, 2014, applicable to GB. For the renewal, the
	Rapporteur Member State (RMS) was France and Co-RMS
	Slovakia.
March 2015	LoEP as published in the EFSA conclusion (EFSA Journal
	2014;12(9):3815) for the renewal of prosulfuron, applicable to
	GB.
September 2023	GB Article 7 amendment assessment for the proposed removal
	of restriction of prosulfuron in GB.

Identity, Physical and Chemical Properties, Details of Uses, Further Information, Methods of Analysis

Identity, Physical and Chemical Properties, Details of Uses, Further Information

Active substance (ISO Common Name) ‡	PROSULFURON		
Function (<i>e.g.</i> fungicide)	Herbicide		
Identity (Annex IIA, point 1)			
Chemical name (IUPAC) ‡	1-(4-methoxy-6-methyl-triazin-2-yl)-3-[2- (3,3,3-trifluoropropyl)-phenylsulfonyl]-urea		
Chemical name (CA) ‡	N-[[(4-methoxy-6-methyl-1,3,5-triazin-2- yl)amino]carbonyl]-2-(3,3,3- trifluoropropyl)benzenesulfonamide		
CIPAC No ‡	579		
CAS No ‡	94125-34-5		
EC No (EINECS or ELINCS) ‡	Not available		
FAO Specification (including year of publication) ‡	/		
Minimum purity of the active substance as manufactured ‡	950 g/kg		
Identity of relevant impurities (of toxicological, ecotoxicological and/or environmental concern) in the active substance as manufactured	CGA 159902 : 2-(3,3,3-trifluoro-propyl)- benzene sulphonamide Maximal content 10 g/kg		
Molecular formula ‡	C15H16F3N5O4S		
Molecular mass ‡	419,4 g/mol		
Structural formula ‡	$ \begin{array}{c} $		

Identity, Physical and Chemical Properties, Details of Uses, Further Information, Methods of Analysis

Physical and chemical properties (Annex IIA, point 2)

Melting point (state purity) ‡	155°C (99.5%)		
Boiling point (state purity) ‡	Open point		
Temperature of decomposition (state purity)	Open point		
Appearance (state purity) ‡	Light beige powder (technical a.i : 95.1% purity)		
	White powder (pure a.i. : 99.4% purity)		
Vapour pressure (state temperature, state purity) ‡	< 3.5 x 10 ⁻⁶ Pa (25°C, 99.5 % purity)		
Henry's law constant ‡	< 3 x 10 ⁻⁴ Pa.m ³ mol ⁻¹		
Solubility in water (state temperature, state purity and pH) ‡	pH 5 : 87 mg/L (25°C, 99.5 % purity) pH 6.8 : 4 g/L (25°C) pH 7.7 : 43 g/L (25°C)		
Solubility in organic solvents ‡ (state temperature, state purity)	At 20°C, 99.5% purity: n-hexane : 6.4 mg/L - toluene : 6.1 g/L n-octanol : 1.4 g/L - ethanol : 8.4 g/L ethyl acetate : 56 g/L - acetone : 160 g/L dichloromethane : 180 g/L		
Surface tension ‡ (state concentration and temperature, state purity)	63 mN/m (20°C, 10.0 g/L suspension in water, 99.5 % purity)		
Partition co-efficient ‡ (state temperature, pH and purity)	pH 5 : 1.5 (25°C, 99.5 % purity) pH 6 : - 0,21 (25°C, 99.5 % purity) pH 9 : - 0,76 (25°C, 99.5 % purity)		
Dissociation constant (state purity) ‡	pKa = 3.76 (20°C, 99.5 % purity)		
UV/VIS absorption (max.) incl. $\epsilon \ddagger$ (state purity, pH)	λ max = 227.5 nm (98.4 % purity) ε : 21645 l.mol ⁻¹ .cm ⁻¹		
Flammability ‡ (state purity)	Not highly flammable 99.5 % purity		
Explosive properties ‡ (state purity)	Not explosive 99.5 % purity		
Oxidising properties ‡ (state purity)	No oxidizing properties 99.5 % purity		

Identity, Physical and Chemical Properties, Details of Uses, Further Information, Methods of Analysis

Summary of representative uses evaluated for prosulfuron*

Gran			F	Pests or	Formulation		Application			Appli	cation r treatme	ate per nt			
Crop and/or situation (a)	Member State	Produ ct Name	F G I (b)	group of pests controlle d (c)	type (d-f)	Conc of a.i. g/kg (i)	method kind (f-h)	growth stage and season (j)	number min-max (k)	interval between applicatio ns (days)	g a.i./hl min- max	water I/ha; min- max	g a.i./ha min- max	PHI (days) (I)	Remarks (m)
Maize and sweet corn	EU	PEAK ® 75 WG	F	Broad leaved weeds as cited on label	WG	750	Broadcast foliar applicatio n	BBCH 12-18 correspondin g to 2-8 leaves	1	-	5-25	80- 400	20	90 (grain) 60 (silage)	In combination with a nonionic surfactant at 0.1% to 0.25% of application volume
Maize and sweet corn	EU	PEAK ® 75 WG	F	Broad leaved weeds as cited on label	WG	750	Broadcast foliar applicatio n	BBCH 12-18 correspondin g to 2-8 leaves	1	-	3.75- 18.75	80- 400	15	90 (grain) 60 (silage)	In combination with a nonionic surfactant at 0.1% to 0.25% of application volume
Maize and sweet corn	EU	PEAK ® 75 WG	F	Broad leaved weeds as cited on label	WG	750	Broadcast foliar applicatio n	BBCH 12-19 correspondin g to 2-9 leaves	1 (or split application)*	-	3.75- 18.75	80- 400	15 (total)	90 (grain) 60 (silage)	In combination with a nonionic surfactant at 0.1% to 0.25% of application volume [split app. is 2 apps to a total of 15g within BBCH 19]

* For uses where the column "Remarks" in marked in grey further consideration is necessary. Uses should be crossed out when the notifier no longer supports this use(s).

(a) For crops, the EU and Codex classification (both) should be taken into account ; where relevant, the use situation should be described (e.g. fumigation of a structure)

(b) Outdoor or field use (F), greenhouse application (G) or indoor application (I)

(c) e.g. biting and suckling insects, soil born insects, foliar fungi, weeds

(d) e.g. wettable powder (WP), emulsifiable concentrate (EC), granule (GR)

(e) GCPF Codes – GIFAP Technical Monograph N° 2, 1989

(f) All abbreviations used must be explained

(g) Method, e.g. high volume spraying, low volume spraying, spreading, dusting, drench

(h) Kind, e.g. overall, broadcast, aerial spraying, row, individual plant, between the plant – type of equipment used must be indicated (i) Concentration in g ai/kg of g ai/L. g/kg or g/L. Normally the rate should be given for the active substance (according to ISO) and not for the variant in order to compare the rate for same active substances used in different variants (e.g. fluoroxypyr). In certain cases, where only one variant synthesised, it is more appropriate to give the rate for the variant (e.g. benthiavalicarb-isopropyl).

 Growth stage at last treatment (BBCH Monograph, Growth Stages of Plants, 1997, Blackwell, ISBN 3-8263-3152-4), including where relevant, information on season at time of application

(k) Indicate the minimum and maximum number of application possible under practical conditions of use

(I) PHI - minimum pre-harvest interval

(m) Remarks may include: extent of use / economic importance / restrictions

Identity, Physical and Chemical Properties, Details of Uses, Further Information, Methods of Analysis

*split application is 2 applications to a total of 15 g/ha within BBCH 19

Identity, Physical and Chemical Properties, Details of Uses, Further Information, Methods of Analysis

Methods of Analysis

Analytical methods for the active substance (Annex IIA, point 4.1)

Technical as (analytical technique)	HPLC-UV (230 nm)
Impurities in technical as (analytical technique)	HPLC-UV (230 nm) GC-FID
	Karl Fisher Potentiometric titration
Plant protection product (analytical technique)	HPLC-UV (230 nm)

Analytical methods for residues (Annex IIA, point 4.2)

Residue definitions for enforcement purposes

Food of plant origin	Prosulfuron
Food of animal origin	Prosulfuron
Soil	Prosulfuron
Water surface	Prosulfuron
drinking/ground	Prosulfuron
Air	Prosulfuron

Enforcement methods

Food/feed of plant origin (analytical	LC-MS/MS		
technique and LOQ for methods for enforcement purposes)	LOQ = 0.01 mg/kg in cereals and dry products, acidic matrices, fatty products and commodities with high water content. ILV and confirmatory data are available.		
Food/feed of animal origin (analytical	LC-MS/MS		
technique and LOQ for methods for enforcement purposes)	LOQ = 0.01 mg/kg in liver, fat, meat, kidney, milk and eggs.		
	ILV and confirmatory data are available.		
Soil (analytical technique and LOQ)	LC-MS/MS		
	LOQ = 0.5 µg/kg in soil		
	Confirmatory method is available		
Water (analytical technique and LOQ)	LC-MS/MS		
	$LOQ = 0.05 \ \mu g/L$ in drinking, surface and		

Identity, Physical and Chemical Properties, Details of Uses, Further Information, Methods of Analysis

	ground water
	Confirmatory data are available
Air (analytical technique and LOQ)	LC-MS/MS LOQ = 1 µg/m ³
Body fluids and tissues (analytical technique and LOQ)	Not required as the active substance is not toxic or very toxic

Classification and proposed labelling with regard to physical and chemical data (Annex IIA, point 10)

Active substance

RMS/peer review proposal

Mammalian toxicology

Impact on Human and Animal Health

Absorption, distribution, excretion and metabolism (toxicokinetics) (Annex IIA, point 5.1)

Rate and extent of oral absorption ‡	Rapid and complete (>90%) based on urinary excretion after oral and intravenous administration
Distribution ‡	Widely distributed
Potential for accumulation ‡	No potential for accumulation
Rate and extent of excretion ‡	About 90% within 48h, mainly via urine (69-83%)
Metabolism in animals ‡	Moderately to extensively metabolized in rats, up to 30% excreted as unchanged parent compound
	Predominant metabolic reactions: hydroxylation at the side chains and the phenyl ring, O-demethylation of the triazine methoxy group, and generation of a double bond on the trifluoropropyl group
Toxicologically relevant compounds ‡ (animals and plants)	Prosulfuron
Toxicologically relevant compounds ‡ (environment)	Prosulfuron

Acute toxicity (Annex IIA, point 5.2)

Rat LD ₅₀ oral ‡	546 mg/kg bw (female rat)	R22/H302
Rat LD ₅₀ dermal ‡	> 2000 mg/kg bw	
Rat LC ₅₀ inhalation \ddagger	> 5.4 mg/L, nose-only	
Skin irritation ‡	Non irritant	
Eye irritation ‡	Non irritant	
Skin sensitisation ‡	Non sensitising (Buehler test and Magnusson and Kligman test)	Xi, R43 or H317*
	*due to the presence of a sensitising impl	<mark>irity</mark>

Short term toxicity (Annex IIA, point 5.3)

Target / critical effect ‡	Liver (hepatocyte hypertrophy), heart (myocardial degeneration), hematopoietic system (red blood cells decreased)
Relevant oral NOAEL ‡	6 mg/kg bw/d (90-day, dog)

Mammalian toxicology

Relevant dermal NOAEL ‡

Relevant inhalation NOAEL ‡

Genotoxicity **‡** (Annex IIA, point 5.4)

No valid study submitted, no further study required Not performed - not required

No genotoxic potential

Long term toxicity and carcinogenicity (Annex IIA, point 5.5)

Target/critical effect ‡Liver (hepatocellular hypertrophy in mice),
indication of hormonal disruption (uterus
and mammalian gland in rats) at high dose
levelsRelevant NOAEL ‡1.7 mg/kg bw/d (18-month, mouse)Carcinogenicity ‡No carcinogenic potential

Reproductive toxicity (Annex IIA, point 5.6)

Reproduction toxicity

Reproduction target / critical effect ‡

Relevant parental NOAEL ‡

Relevant reproductive NOAEL ‡ Relevant offspring NOAEL ‡

Developmental toxicity

Developmental target / critical effect ‡

Relevant maternal NOAEL ‡ Relevant developmental NOAEL ‡

Neurotoxicity (Annex IIA, point 5.7)

Acute neurotoxicity ‡ Repeated neurotoxicity ‡ Delayed neurotoxicity ‡

Reduced pup weight at parental toxic doses (rats)	
12 mg/kg bw/d (rat)	
251 mg/kg bw/d (rat)	
12 mg/kg bw/d (rat)	

Skeletal variations (rat) and resorptions (rabbit) at maternal toxic doses	
10 mg/kg bw/d (rabbit)	
10 mg/kg bw/d (rabbit)	

No specific neurotoxic effects	
No specific neurotoxic effects	
Not performed - not required	

Mammalian toxicology

Other toxicological studies (Annex IIA, point 5.8)

Mechanism studies ‡	Not relevant
Studies performed on metabolites or impurities ‡	CGA150829 (triazine amine), CGA159902, CGA349707, CGA325025 and SYN547308.
	- CGA349707:
	<i>In vitro</i> genotoxicity tests - Ames test, mouse lymphoma assay and cytogenetic assay in human lymphocytes: negative <u><i>Conclusion</i></u> Not genotoxic
	ADI of 0.001 mg/kg per day (derived by multiplying the ADI of prosulfuron 0.02 mg/kg bw/day, by 5%).
	 <u>CGA159902 (CA1118A):</u> Acute oral LD50 > 2000 mg/kg bw Acute dermal LD50 > 2000 mg/kg bw Not a skin or eye irritant Sensitiser (M&K test) – R43; H317 <i>In vitro</i> genotoxicity tests - Ames test: negative; mouse lymphoma assay: positive (small colonies); cytogenetic assay in human lymphocytes: positive <i>In vivo</i> genotoxicity tests – UDS assay: negative; mouse bone marrow micronucleus test: negative Not genotoxic. It is a skin sensitiser (Cat 1). ADI of 0.0013 mg/kg per day (derived by multiplying the ADI of prosulfuron 0.02 mg/kg bw/day, by 6.7%).
	 <u>CGA150829 (triazine amine):</u> Acute oral LD50 > 2000 mg/kg bw (M); =1000 mg/kg bw (F) – R22; H302 Acute dermal LD50 > 2000 mg/kg bw Acute inhalation LC50 > 5.2 mg/L Not a skin or eye irritant
	Not a sensitiser (M&K test)
	28 day rat study – NOAEL (males) <50 ppm (3.6 mg/kg bw/day), females 150 ppm (11

Mammalian toxicology

mg/kg_bw/day). Benchmark_dose_analysis BMDL10 (combined): 0.7 mg/kg bw/day.

In vitro genotoxicity tests - Ames test: negative; cytogenetic assays: negative in Chinese hamster cells, positive in human lymphocytes; UDS assays: negative both on rat hepatocytes and human fibroblasts; mammalian gene mutation assays (HPRT locus) in Chinese hamster ovary cells and mouse lymphoma L5178Y cells: both negative; micronucleus test in human lymphocytes: negative

In vivo genotoxicity tests – chromosome studies on somatic Chinese hamster cells: negative

Conclusion

Not genotoxic.

ADI of 0.0007 mg/kg bw/day (derived from 28d study BMDL₁₀, AF of 100; additional factor of 10 for extrapolation from sub-acute to chronic exposure).

- CGA325025

In vitro genotoxicity tests - Ames test: negative, mouse lymphoma assay: negative, cytogenetic assay in human lymphocytes: equivocal, micronucleus test in human lymphocytes: negative.

Conclusion

Not genotoxic.

The **TTC Cramer Class III value (1.5** µg/kg bw/day) can be used as a reference value for risk assessment*.

- SYN547308

In vitro genotoxicity tests - Ames test: negative, mouse lymphoma assay: negative, cytogenetic assay in human

lymphocytes: positive, micronucleus test in human lymphocytes: negative.

Conclusion

Not genotoxic.

The **TTC Cramer Class III value (1.5** µg/kg bw/day) can be used as a reference value for risk assessment*.

Mammalian toxicology

*Combined risk assessment for the CGA325025 and SYN547308 is not required (significant differences in structural similarity and in functional groups).

Medical data ‡ (Annex IIA, point 5.9)

No reported case of adverse reactions related to the handling of prosulfuron during its synthesis, formulation or packaging.

Three cases of occupational or accidental exposure to prosulfuron (dermal, oral or unknown route, minor or none severity grade, one case of oral irritation, two cases with symptom "not reported")

Summary (Annex IIA, point 5.10)	Value	Study	Safety factor	
ADI ‡	0.02 mg/k bw/d	g 1-year, dog and 18-month, mouse	100	
AOEL ‡	0.06 mg/ł bw/d	g 90-day, dog	100	
ARfD ‡	0.1 mg/kg b	W Developmental toxicity, rabbit	100	

Dermal absorption ‡ (Annex IIIA, point 7.3)

Formulation (A8714C, 75 WG)	Results of the <i>in vitro</i> human epidermis study: Concentrate (50% w/w slurry): 0.1% Spray dilution 1/750: 3% Spray dilution 1/1500: 4%
	Values used for the representative formulation, according to the GAPs: Undiluted: 0.1% Spray dilutions 0.25 g a.s/L (dilution volume 80 L/ha): 4%
	Spray dilutions 0.05 g a.s/L (dilution volume 400 L/ha): 25%
	Spray dilutions with the use of an adjuvant: 75%

Mammalian toxicology

Exposure scenarios (Annex IIIA, point 7.2)

Operator	UK-POEM without PPE: 13% AOEL (80L/ha), 16% AOEL (400 L/ha), 218% AOEL (with adjuvant)
	UK-POEM with gloves during mixing/loading and application: 35% AOEL (with adjuvant)
	German model without PPE: 0.9% AOEL (80 L/ha), 5.0% AOEL (400 L/ha), 15% AOEL (with adjuvant)
Workers	13% of AOEL without PPE (scouting)
Bystanders	0.2% of AOEL
	Resident: 0.01% of AOEL for both adults and children

Classification and proposed labelling with regard to toxicological data (Annex IIA, point 10)

Substance classified	Prosulfuron
Classification according to Council Directive 67/548/EEC / Regulation (EC) No 1272/2008:	Harmonised classification and labelling: Xn, R22 Acute tox. 4 (H302)
Peer review proposal*	Under Council Directive 67/548/EEC ¹ Xn, R22 R43
	Under Regulation (EC) No 1272/2008 ² Acute tox. 4 (H302) Skin sensitisation 1 (H317)
	Justification : R43/H317 due to the presence of a sensitising impurity in the technical specifications

* It should be noted that classification is formally proposed and decided in accordance with Regulation (EC) No 1272/2008. Proposals for classification made in

¹ OJ No 196, 16.08.1967, p. 001-0098

² OJ No L 353, 31.12.2008, p. 0001-1355

[‡] End point identified by the EU-Commission as relevant for Member State when applying the Uniform Principles

Mammalian toxicology

the context of the evaluation procedure under Regulation (EC) No 1107/2009 are not formal proposals.

Residues

Metabolism in plants (Annex IIA, point 6.1 and 6.7, Annex IIIA, point 8.1 and 8.6)

Plant groups covered	Cereals (maize)
Rotational crops	Radish, spinach, wheat, lettuce
Metabolism in rotational crops similar to metabolism in primary crops?	Yes
Processed commodities	Not necessary
Residue pattern in processed commodities similar to residue pattern in raw commodities?	-
Plant residue definition for enforcement	Prosulfuron
Plant residue definition for risk assessment	Prosulfuron
Conversion factor (enforcement to risk assessment)	-

Metabolism in livestock (Annex IIA, point 6.2 and 6.7, Annex IIIA, point 8.1 and 8.6)

Animals covered	Goat, hen
Time needed to reach a plateau	Milk : n.a.
concentration in milk and eggs	Eggs : 2 days (egg white), 6 days (egg yolk)
Animal residue definition for enforcement	Prosulfuron
Animal residue definition for risk assessment	Prosulfuron
Conversion factor (enforcement to risk assessment)	-
Metabolism in rat and ruminant similar (yes/no)	Yes
Fat soluble residue: (yes/no)	No (log P = -0.21 at pH 6)

Residues in succeeding crops (Annex IIA, point 6.6, Annex IIIA, point 8.5)

No accumulation in soil. No uptake of soil specific metabolites.

Stability of residues (Annex IIA, point 6 introduction, Annex IIIA, point 8 Introduction)

Residues

Residues of prosulfuron are stable under freezer storage for at least 25 months (maize grain and forage; beef muscle, beef liver, and milk), 12 months in maize oil and 16 months in eggs

Residues from livestock feeding studies (Annex IIA, point 6.4, Annex IIIA, point 8.3)

	Ruminant	Poultry	Pig
	Conditions o studies	f requirement	of feeding
Expected intakes by livestock ≥ 0.1 mg/kg diet (dry weight basis) (yes/no - If yes, specify the level)	No (but study available)	No (but study available)	No
Potential for accumulation (yes/no)	No	No	No
Metabolism studies indicate potential level of residues ≥ 0.01 mg/kg in edible tissues (yes/no)	No	No	No
	Feeding studie cows 5, 15, 5 study on laying feed). Residue levels mg/kg	es (feeding stud 50 ppm in the g hens 0.1, 0.3 s in matrices	dy on lactating feed; feeding , 1 ppm in the : Mean (max)
Muscle	<0.05 mg/kg whatever the feeding dose	<0.05 mg/kg whatever the feeding dose	-
Liver	<0.05 mg/kg whatever the feeding dose	<0.05 mg/kg whatever the feeding dose	-
Kidney	<0.05 mg/kg whatever the feeding dose	<0.05 mg/kg whatever the feeding dose	-
Fat	<0.05 mg/kg whatever the feeding dose	<0.05 mg/kg whatever the feeding dose	-
Milk	<0.01 mg/kg whatever the feeding dose		
Eggs		<0.05 mg/kg whatever the feeding dose	

Residues

Summary of residues data according to the representative uses on raw agricultural commodities and feeding stuffs (Annex IIA, point 6.3, Annex IIIA, point 8.2)

Сгор	Northern or Mediterranean Region, field or glasshouse, and any other useful information	Trials results relevant to the representative uses (a)	Recommendation/comments	MRL estimated from trials according to the representative use	Recommended MRL	HR (c)	STMR (b)
Maize	Northern EU	8x<0.01; 4x<0.02	EU intended GAP : foliar	0.02*	<mark>0.01*</mark>	<0.02	<0.01
	Southern EU	4x<0.01; 3x<0.02	90 days (grain)			<0.02	<0.01
Sweet	Northern EU	11x<0.01	EU intended GAP : foliar	0.02*	<mark>0.01*</mark>	<0.01	<0.01
corn	Southern EU	4x<0.01	treatment, 20 g as/ha, PHI 90 days (grain)			<0.01	<0.01

(a) Numbers of trials in which particular residue levels were reported *e.g.* $3 \times (0.01, 1 \times 0.01, 6 \times 0.02, 1 \times 0.04, 1 \times 0.08, 2 \times 0.1, 2 \times 0.15, 1 \times 0.17$

(b) Supervised Trials Median Residue *i.e.* the median residue level estimated on the basis of supervised trials relating to the representative use

(c) Highest residue

Residues

Consumer risk assessment (Annex IIA, point 6.9, Annex IIIA, point 8.8)

ADI	0.02 mg/kg bw/d
TMDI (% ADI) according to EFSA PRIMo	10% (NL toddler)
IEDI (% ADI) according to EFSA PRIMo	0.4% (NL toddler)
NEDI (% ADI)	<1% (infant)
ARfD	0.1 mg/kg bw
IESTI (%ARfD) according to EFSA PRIMo	<mark>0.4</mark> % (sweet corn) <mark>0.07</mark> % (maize <mark>/corn</mark>)
NESTI (% ARfD)	0.4% (sweet corn) 0.1% (maize/corn)

Processing factors (Annex IIA, point 6.5, Annex IIIA, point 8.4)

Not necessary as residue level in RAC <0.1 mg/kg

Proposed MRLs (Annex IIA, point 6.7, Annex IIIA, point 8.6)

Since an analytical method for enforcement in plant is available with a LOQ of 0.01 mg/kg, the proposed MRL of 0.02*mg/kg from trials in maize and sweet corn was recommended to be set at 0.01* mg/kg in the Article 12 MRL review (2012).

Maize grain Sweet corn

<mark>0.01</mark> * mg/kg	
<mark>0.01</mark> * mg/kg	

Route of degradation (aerobic) in soil (Annex IIA, point 7.1.1.1)

Mineralization after 100 days ‡	up to 13.1 % (phenyl) and 21.5 % (triazine) after 120 days
Non-extractable residues after 100 days ‡	12-44 % (phenyl) after 90 days; max. 57% after 1 year 9-34 5 % (triazine) after 90 days
	9-04.0 % (inazine) anel 90 uays
Metabolites requiring further consideration ‡	CGA159902 (phenyl sulfonamide): max. 47.4 % after 12 months
 name and/or code, % of applied (range and maximum) 	CGA150829 (triazine amine): max. 40.6 % after 62 days
	CGA300406 (O-desmethyl): max. 24.0 % after 30 days
	CGA 325025 (demethoxy amino): max. 17.4 % after 274 days
	CGA349707: max. 22.6 % after 12 months
	SYN542604 (M5): max. 30.8 % after 62 days
	<mark>SYN547308 (M18): max. 9.9% after 62</mark> days

Route of degradation in soil - Supplemental studies (Annex IIA, point 7.1.1.1.2)

Anaerobic degradation ‡					
Mineralization after 100 days	0.1-0.4 % after 90 days (both labels)				
Non-extractable residues after 100 days	8-16 % after 90 days (both labels)				
Metabolites that may require further consideration for risk assessment – name and/or code, % of applied (range	No novel major metabolites compared to aerobic conditions. CGA159902: max. 20.4 % after 92 days				
and maximum)	CGA150829: max. 8.3 % after 90 days				
	CGA300406: max. 8.2 % after 92 days				
	CGA 325025: max. 16.3 % after 90 days				
Soil photolysis ‡					
Metabolites that may require further consideration for risk assessment –	No novel major metabolites compared to aerobic conditions.				
name and/or code, % of applied (range and maximum)	CGA159902, CGA300406 and 3 unidentified metabolites (from triazine moiety) all <5%				

Rate of degradation in soil (Annex IIA, point 7.1.1.2, Annex IIIA, point 9.1.1)

Laboratory studies ‡

Prosulfuron		Dark	Dark aerobic conditions.							
Study	Soil type	рН	t. °C / % MWHC	DT ₅₀ / DT ₉₀ (d)	DT ₅₀ (d) 20 °C pF2/10kP a ^{a)}	St. (χ²)	Method of calculation			
,	18 Acres (phenyl) Sandy clay loam	5.84	20 / pF2	22.5 / 74.7	22.5	7.2	SFO			
2011	18 Acres (triazine) Sandy clay Ioam	5.84	20 / pF2	18.9 / 62.8	18.9	9.8	SFO			
, 2011a	18 Acres (triazine) Sandy clay Ioam	5.84	20 / pF2	21.0 / 69.9	21.0	8.3	SFO			
	Vétroz (triazine) Loam	7.77	20 / pF2	41.3 / 137	41.3	2.4	SFO			
	Krone (triazine) Silt loam	5.38	20 / pF2	15.4 / 51.1	15.4	9.3	SFO			
	Nebraska (triazine) Silt loam	6.61	20 / pF2	61.1 / 203	61.1	6.9	SFO			
. 1993a	Fayette (phenyl) Sandy Ioam	6.6	25 / 75% FC	88.9 / 295	106	8.4	SFO			
, 1993 b	Fayette (triazine) Sandy Ioam	6.6	25 / 75% FC	192 / 639	229	3.3	SFO			
, 1994a ^{c)}	Madison (phenyl) Sandy Ioam	6.1	25 / 75% FC	143 / 476	142	4.6	SFO			
, 1994b ^{d)}	Madison (triazine) Sandy Ioam	6.1	25 / 75% FC	124 / 410	122	4.0	SFO			

Fate and behaviour in the environment

Prosulfuron		Dark	aerobic co	conditions.			
Study	Soil type	рН	t. ℃ / % MWHC	DT ₅₀ / DT ₉₀ (d)	DT ₅₀ (d) 20 °C pF2/10kP a ^{a)}	St. (χ²)	Method of calculation
	Neuhofen (phenyl) Loamy sand	6.6	20 / 40% MWHC	177 / 589	124	3.6	SFO
, 1994 ^{e)}	Collombey (phenyl) Loamy sand / sand	7.2	20 / 40% MWHC	138 / 459	98.2	5.2	SFO
	Stein (phenyl) Sandy Ioam / Ioam	7.0	20 / 40% MWHC	198 / 657	132	3.2	SFO
	Les Evouettes (phenyl) Silt loam	7.3	20 / 40% MWHC	74.3 / 247	47.2	5.6	SFO
, 1995 ^{f)}	Les Evouettes (phenyl) Silt loam	7.0	20 / 60% FC	24.4 / 80.9	21.9	7.2	SFO
Geometric mea Median (n=10)	an (n=10)				62.1 ^{b)} 79.7 ^{b)}		

a) Normalised using a Q₁₀ of 2.58 and Walker equation coefficient of 0.7

b) Geometric mean of replicate soils calculated first (18 Acres 20.8 days; Fayette 156 days; Madison 131 days; Les Evouettes 32.2 days)

c) In the original DAR 1994j

In the original DAR 1994a d)

e) In the original DAR 1994a f)

In the original DAR 1994b

CGA150829	Dark aerobic conditions. Metabolite dosed or the precursor from which the f.f. was derived was parent prosulfuron.							
Study	Soil type	pН	t. °C / % MWHC	DT ₅₀ / DT ₉₀ (d)	f. f.	DT ₅₀ (d) 20 °C pF2/10kP a ^{a)}	St. (χ²)	Method of calculation
, 2011	18 Acres (triazine) Sandy clay Ioam	5.84	20 / pF2	295 / 979	0.36	295	10.4	SFO

CGA150829)	Dark aerobic conditions. Metabolite dosed or the precursor from which the f.f. was derived was parent prosulfuron.								
Study	Soil type	рН	t. ºC / % MWHC	DT ₅₀ / DT ₉₀ (d)	f. f.	DT ₅₀ (d) 20 °C pF2/10kP a ^{a)}	St. (χ²)	Method of calculation		
	18 Acres (triazine) Sandy clay Ioam	5.84	20 / pF2	228 / 757	0.28	228	2.9	SFO		
,	Vétroz (triazine) Loam	7.77	20 / pF2	61.9 / 205	0.11	61.9	16.8	SFO		
2011a	Krone (triazine) Silt loam	5.38	20 / pF2	>1000 / >1000	0.41	1000	7.3	SFO		
	Nebraska (triazine) Silt loam	6.61	20 / pF2	>1000 / >1000	0.21	1000	22.4	SFO		
& 1 , 2006	18 Acres Sandy clay Ioam	5.0	20 / pF2	<mark>249</mark> / 830	-	<mark>249</mark>	3.2	SFO		
	Gartenacke r Loam	6.9	20 / pF2	102 <mark>.2</mark> / 339	-	102 <mark>.2</mark>	3.5	SFO		
	Krone Silt Ioam	4.9	20 / pF2	191 / 634	-	191	3.7	SFO		
, ,	Honville Loamy silt	6.7	20 / 40% MWHC	113.6 / 717.6	-	260.1 ^{b)}	3.03	HS ^{e)}		
2011	Arrow Sandy Ioam	5.7	20 / 50% MWHC	44.7 / 97.0	-	22.5 ^{c)}	14	HS ^{f)}		
, 1993b	Fayette Sandy Ioam	6.6	25 / 75% FC	>1000 / >1000	0.15	1000	17.1	SFO		
, 1994b ^{g)}	Madison Sandy Ioam	6.1	25 / 75% FC	>1000 / >1000	0.34	1000	17.9	SFO		
<mark>1987*</mark> ,	Keyport; silt loam	<mark>4.3</mark>	25°C / 70% FC	208 / 691	ł	<mark>254</mark>	<mark>6.2</mark>	SFO		

CGA150829)	Dark aerobic conditions. Metabolite dosed or the precursor from which the f.f. was derived was parent prosulfuron.								
Study	Soil type	pН	t. °C / % MWHC	DT ₅₀ / DT ₉₀ (d)	f. f.	DT ₅₀ (d) 20 °C pF2/10kP a ^{a)}	St. (χ²)	Method of calculation		
<mark>(2006a)</mark> *	Soil 2.2; loamy sand	5.7 (H2 O)	20°C / 45% MWHC	67.3 / 224	•	<mark>67.3</mark>	<mark>5.68</mark>	SFO		
<mark>(2006a)</mark> *	Soil 3A; sandy loam	7.3 (H2 O)	20°C / 45% MWHC	<mark>280.4 /</mark> >1000	•	<mark>385^{c)}</mark>	2	HS ^{g)}		
<mark>(2006a)</mark> *	Soil 6S; clay loam	7.1 (H2 O)	20°C / 45% MWHC	<mark>333.2 /</mark> 1107	•	<mark>230.1</mark>	1	SFO		
and (2002)**	Speyer 2.1; sand	<mark>5.5</mark>	<mark>20°C /</mark> pF2	<mark>112.5 /</mark> 374	•	<mark>112.5</mark>	<mark>2.9</mark>	SFO		
and (2002)**	Soil 115; clay loam	<mark>8.6</mark>	<mark>20°C /</mark> pF2	<mark>175.2 /</mark> 582	•	175.2	<mark>3.1</mark>	SFO		
and (2002)**	Soil 243; sandy loam	<mark>5.6</mark>	<mark>20°C /</mark> pF2	96.4 / 320.2	•	<mark>96.4</mark>	<mark>6.2</mark>	SFO		
Median (n= <mark>19</mark>)						216 ^{d)}				
Arithmetic m	nean (n=6)				0. <mark>28^{d)}</mark>					

^{a)} Normalised using a Q₁₀ of 2.58 and Walker equation coefficient of 0.7

^{b)} Calculated from slow phase (ln(2)/k₂); normalised value (correction factor (18.76/27)^0.7).

c) Calculated from slow phase $(ln(2)/k_2)$

d) Geometric/arithmetic mean of replicate soils calculated first (18 Acres (pH 5.84) 259 days / ffM 0.32)

^{e)} $k_1=0.01772, k_2=0.00266, t_b=\frac{25.9}{25.9}$

^{f)} $k_1=0$ (fixed; lag phase), $k_2=0.03082$, $t_b=22.25$

^{a)} $k_1=0.013, k_2=0.002, t_b=20$

*Metabolite dosed studies, accepted in the RAR for thifensulfuron-methyl: (1987), (2006a), also incorporating an updated kinetic assessment for soil 3A presented in the RAR of tribenuron-methyl and agreed by the Peer review.

**Metabolite dosed studies, accepted in the RAR for metsulfuron methyl: and (2002). DT_{50}

CGA159902	2	Dark aerobic conditions. Metabolite dosed or the precursor from which the f.f. was derived was parent prosulfuron.							
Study	Soil type	рН	t. ºC / % MWHC	DT ₅₀ / DT ₉₀ (d)	f. f.	DT ₅₀ (d) 20 °C pF2/10k Pa ^{a)}	St. (χ²)	Method of calculation	
, 2011	18 Acres (triazine) Sandy clay Ioam	5.84	20 / pF2	90.6 / 301	0.36	90.6	16.4	SFO	
&	18 Acres Sandy clay Ioam	5.0	20 / pF2	7.5 / 373	-	173 ^{b)}	5.3	DFOP ^{c)}	
, 2006	Gartenacker Loam	6.9	20 / pF2	3.1 / 140	-	169 ^{b)}	11.3	HS ^{d)}	
	Krone Silt loam	4.9	20 / pF2	89.7 / 298	-	89.7	8.9	SFO	
, 1993a	Fayette Sandy loam	6.6	25 / 75% FC	>1000 / >1000	<mark>0.49</mark>	1000	9.1	SFO	
Geometric mean (n=5)					188				
Arithmetic r	nean (n=2)				<mark>0.43</mark>				

^{a)} Normalised using a Q₁₀ of 2.58 and Walker equation coefficient of 0.7

^{b)} Calculated from slow phase (ln(2)/k₂) ^{c)} $k_1=0.2796, k_2=0.0040, g=0.5553$

^{d)} $k_1=0.2256, k_2=0.0041, t_b=7.8046$

CGA300406		Dark aerobic conditions. The precursor from which the f.f. was derived was parent prosulfuron.							
Study	Soil type	рН	t. ºC / % MWHC	DT ₅₀ / DT ₉₀ (d)	f. f.	DT ₅₀ (d) 20 °C pF2/10k Pa ^{a)}	St. (χ²)	Method of calculation	
,	18 Acres (phenyl) Sandy clay Ioam	5.84	20 / pF2	4.3 / 13.3	0.48	4.3	25.4	SFO	
2011	18 Acres (triazine) Sandy clay Ioam	5.84	20 / pF2	4.0 / 14.4	0.40	4.0	20.9	SFO	
, 2011a	18 Acres (triazine) Sandy clay Ioam	5.84	20 / pF2	4.1 / 13.7	0.51	4.1	10.5	SFO	
	Vétroz (triazine) Loam	7.77	20 / pF2	25.4 / 84.4	0.56	25.4	10.0	SFO	

CGA300406		Dark aerobic conditions. The precursor from which the f.f. was derived was parent prosulfuron.						
Study	Soil type	pН	t. ºC / % MWHC	DT ₅₀ / DT ₉₀ (d)	f. f.	DT ₅₀ (d) 20 °C pF2/10k Pa ^{a)}	St. (χ²)	Method of calculation
	Krone (triazine) Silt loam	5.38	20 / pF2	2.6 / 8.8	0.29	2.6	29.6	SFO
	Nebraska (triazine) Silt Ioam	<mark>6.61</mark>	<mark>20 / pF2</mark>	<mark>14.0 / 46.5</mark>	<mark>0.25</mark>	<mark>14.0</mark>	<mark>30.7</mark>	<mark>SFO</mark>
, 1994	Les Evouettes (phenyl) Silt loam	7.3	20 / 40% MWHC	47.5 / 158	0.46	30.2	11.3	SFO
, 1995	Les Evouettes (phenyl) Silt Ioam	7.0	20 / 60% FC	23.3 / 77.5	0.68	21.0	14.0	SFO
Geometric mean (n=5)					9.1 ^{b)}			
Arithmetic	mean (n=5)				0.47 ^b			

 $^{\rm a)}$ $\,$ Normalised using a Q_{10} of 2.58 and Walker equation coefficient of 0.7 $\,$

b) Geometric/arithmetic mean of replicate soils calculated first (18 Acres 4.1 days / 0.46; Les Evouettes 25.2 days / 0.57). Maximum (30.2 d) and minimum (2.6 d) values used in the groundwater exposure assessment to account for pH dependency.

c) In the original DAR 1994a

^{d)} In the original DAR 1994b

CGA325025		Dark aerobic conditions. Metabolite dosed.						
Study	Soil type	рН	t. ºC / % MWHC	DT ₅₀ / DT ₉₀ (d)	f. f.	DT ₅₀ (d) 20 °C pF2/10k Pa ^{a)}	St. (χ²)	Method of calculation
2011	18 Acres Sandy clay Ioam	5.0	20 / pF2	50.1 / 167	-	50.1	5.7	SFO
	Gartenacker Loam	6.9	20 / pF2	102 / 340	-	102	7.0	SFO
	Krone Silt loam	4.9	20 / pF2	47.4 / 157	-	47.4	6.9	SFO
Geometric mean (n=3)					62.4			
Assumed ffM (from CGA300406)				0.12 ^b				

 $^{\rm a)}$ $\,$ Normalised using a Q_{10} of 2.58 and Walker equation coefficient of 0.7 $\,$

^{b)} Assumed ffm from CGA300406, calculated by (1-ffM_SYN542604)

SYN542604		Dark a which	aerobic cor the f.f. was	nditions. Met s derived wa	abolite is meta	dosed or t abolite CGA	he preci \300406	ursor from
Study	Soil type	рН	t. ºC / % MWHC	DT ₅₀ / DT ₉₀ (d)	f. f.	DT ₅₀ (d) 20 °C pF2/10k Pa ^{a)}	St. (χ²)	Method of calculation
,	18 Acres (phenyl) Sandy clay Ioam	5.84	20 / pF2	150 / 499	1.00	150	2.6	SFO
2011	18 Acres (triazine) Sandy clay Ioam	5.84	20 / pF2	142 / 472	1.00	142	6.1	SFO
	18 Acres (triazine) Sandy clay Ioam	5.84	20 / pF2	184 / 611	0.73	184	3.8	SFO
, 20112	Vétroz (triazine) Loam	7.77	20 / pF2	61.5 / 204	0.87	61.5	19.6	SFO
2011a	Krone (triazine) Silt loam	5.38	20 / pF2	125 / 415	1.00	125	5.5	SFO
	Nebraska (triazine) Silt loam	6.61	20 / pF2	118 / 391	1.00	118	8.5	SFO
, 1994 ^{c)}	Les Evouettes (phenyl) Silt loam	7.3	20 / 40% MWHC	81.9/ 272	0.66	52.0	17.5	SFO
, 1995 ^{d)}	Les Evouettes (phenyl) Silt loam	7.0	20 / 60% FC	56.6 / 188	0.54	51.0	9.6	SFO
,	18 Acres Sandy clay Ioam	5.0	20 / pF2	102 / 340	-	102	6.0	SFO
& 1 , 2011	Gartenacker Loam	6.9	20 / pF2	25.0 / 83.2	-	25.0	9.8	SFO
	Krone Silt loam	4.9	20 / pF2	140 / 464	-	140	6.1	SFO
Geometric m				84.6 ^{b)}				
Arithmetic me	ean (n=5)				0.88 ^b			

^{a)} Normalised using a Q₁₀ of 2.58 and Walker equation coefficient of 0.7

- ^{b)} Geometric/arithmetic mean of replicate soils calculated first (18 Acres (pH 5.84) 158 days / 0.91; Les Evouettes 51.5 days / 0.60)
- c) In the original DAR 1994a
- ^{d)} In the original DAR 1994b

CGA349707		Dark a which	aerobic cor the f.f. was	nditions. Met s derived wa	abolite s meta	dosed or t abolite SYN	the prec 1542604	ursor from
Study	Soil type	рН	t. ºC / % MWHC	DT ₅₀ / DT ₉₀ (d)	f. f.	DT ₅₀ (d) 20 °C pF2/10k Pa ^{a)}	St. (χ²)	Method of calculation
	18 Acres Sandy clay Ioam	5.0	20 / pF2	113 / 376	-	113	2.8	SFO
, 2006	Gartenacker Loam	6.9	20 / pF2	91.9 / 305	-	91.9	3.0	SFO
	Krone Silt loam	4.9	20 / pF2	140 / 466	-	140	2.2	SFO
, 1994 ^{c)}	Les Evouettes (phenyl) Silt loam	7.3	20 / 40% MWHC	331 / >1000	1.00	210	10.6	SFO
, 1995 ^{d)}	Les Evouettes (phenyl) Silt loam	7.0	20 / 60% FC	737 / >1000	0.72	663	7.8	SFO
Geometric mea	an (n=7)					153 ^{b)}		
Arithmetic mea	an (n=2)				0.86			

^{a)} Normalised using a Q₁₀ of 2.58 and Walker equation coefficient of 0.7

b) Geometric mean of replicate soils calculated first (Les Evouettes 373 days)

^{c)} In the original DAR 1994a

^{d)} In the original DAR 1994b

<mark>SYN547308</mark>		Dark aerobic conditions. Metabolite dosed.							
Study	Soil type	<mark>рН</mark>	<mark>t. ºC / %</mark> MWHC	DT ₅₀ / DT ₉₀ (d)	f. f.	DT ₅₀ (d) 20 °C pF2/10k Pa ^{a)}	<mark>St.</mark> (χ²)	Method of calculation	
	<mark>Vétroz</mark> Loam	<mark>7.7</mark>	20 / pF2	<mark>174 / 654</mark>	-	<mark>207^{b)}</mark>	<mark>1.18</mark>	DFOP	
<mark>, 2014</mark> , 2014	18 Acres Sandy clay Ioam	<mark>5.8</mark>	<mark>20 / pF2</mark>	<mark>17.6 /</mark> 120	-	<mark>36.4^{c)}</mark>	<mark>3.77</mark>	FOMC	
	<mark>Krone</mark> Silt Ioam	<mark>5.0</mark>	<mark>20 / pF2</mark>	<mark>7.79 /</mark> 133	-	<mark>40.1^{c)}</mark>	<mark>2.40</mark>	FOMC	
Geometric mean (n=3)						<mark>67.1</mark>			

<mark>SYN547308</mark>		Dark aerobic conditions. Metabolite dosed.						
Study	Soil type	<mark>рН</mark>	<mark>t. ºC / %</mark> MWHC	DT₅₀/ DT∍₀ (d)	<mark>f. f.</mark>	DT ₅₀ (d) 20 °C pF2/10k Pa ^{a)}	<mark>St.</mark> (χ²)	Method of calculation
Arithmetic mean					<mark>_</mark> d)			

^{a)} Normalised using a Q₁₀ of 2.58 and Walker equation coefficient of 0.7

^{b)} Ln(2)/k₂

^{c)} DT₉₀/3.32

^{d)} Formation fraction set at 0.5 for groundwater modelling

Field studies ‡

Parent	Aerobic cond	itions -	- Persis	stence e	ndpoints	3		
Soil type (indicate if bare or cropped soil was used).	Location (country or USA state).	рН	Dept h (cm)	DT₅₀ (d) actual	DT ₉₀ (d) actual	DT₅0 (d) Norm.	St. (χ²)	Method of calculation
Sandy loam Bare soil	Altratjensdor f, Germany	6.1	30	38.9	129	-	10.2	SFO
Silt loam Bare soil	Wallesdorf, Germany	6.8	30	4.3	30.2	-	5.2	DFOP ^{a)}
Loamy sand Bare soil	Coesfeld, Germany	4.9	20	16.1	53.4	-	15.8	SFO
Silt loam Bare soil	Uhrsleben, Germany	6.2	20	18.5	61.4	-	16.9	SFO
Sandy loam Bare soil	Altratjensdor f, Germany	6.2	20	7.8	25.9	-	13.6	SFO
Sandy loam Bare soil	Herxheimwe yher, Germany	6.8	20	10.0	33.1	-	4.4	SFO
Silt Ioam Maize	Vouvry, Switzerland	7.8	30	4.6	30.9	-	1.1	FOMC ^{b)}
Loamy sand Maize	Vouvry, Switzerland	7.8	30	4.6	15.2	-	5.7	SFO
Sandy loam Maize	Camisano, Vicentino, Italy	7.4	30	3.8	54.5	-	1.1	DFOP ^{c)}
Silt Ioam Maize	Estillac, France	7.0	30	15.6	51.9	-	14.5	SFO
Silt loam Bare soil	Estillac, France	7.0	30	6.1	20.4	-	14.9	SFO
Sandy loam Bare soil	Bogense, Denmark	<mark>6.48</mark>	<mark>20</mark>	<mark>4.6</mark>	<mark>55.8</mark>	-	<mark>8.23</mark>	DFOP ^{d)}

Parent	Aerobic cond	itions –	- Persis	stence e	endpoint	S		
Soil type (indicate if bare or cropped soil was used).	Location (country or USA state).	рН	Dept h (cm)	DT₅₀ (d) actual	DT ₉₀ (d) actual	DT ₅₀ (d) Norm.	St. (χ²)	Method of calculation
Silt Ioam Bare soil	Castelsarras in, France	<mark>6.06</mark>	<mark>10</mark>	<mark>11.4</mark>	<mark>38.0</mark>	-	<mark>12.4</mark>	<mark>SFO</mark>
<mark>Loam</mark> Bare soil	<mark>St. Cyprien,</mark> France	<mark>7.4</mark>	<mark>20</mark>	<mark>17.4</mark>	<mark>150</mark>	-	<mark>5.5</mark>	DFOP ^{e)}
Clay loam Bare soil	Breitenwisch , Germany	<mark>5.32</mark>	<mark>10</mark>	<mark>9.01</mark>	<mark>29.9</mark>	-	<mark>12.6</mark>	<mark>SFO</mark>
<mark>Clay</mark> Bare soil	<mark>Canals,</mark> Spain	<mark>7.6</mark>	<mark>20</mark>	<mark>20.5</mark>	<mark>98.1</mark>	-	<mark>6.83</mark>	DFOP ^{f)}
<mark>Loam</mark> Bare soil	<mark>Wilson, UK</mark>	<mark>7.07</mark>	<mark>10</mark>	<mark>12.5</mark>	<mark>41.6</mark>	-	<mark>17.8</mark>	<mark>SFO</mark>
Geometric mea				-				
Median						-		

k1=0.1952, k2=0.0080, g=0.8758 a)

α=1.3659, β=7.0222 b)

^{c)} $k_1=0.3106, k_2=0.0207, g=0.6918$

^{d)} k₁=2.989, k₂=0.03143, g=0.4222

^{e)} $k_1=0.1201, k_2=0.01126, g=0.4615$ ^{f)} $k_1=0.4408, k_2=0.02076, g=0.2342$

Parent	Aerobic conditions – modelling endpoints (normalisation with measured soil moisture data)									
Soil type (indicate if bare or cropped soil was used).	Location (country or USA state).	pH (CaCl₂)	<mark>Depth</mark> (cm) ^{a)}	DegT50 (d) 20°C, pF2	<mark>St.</mark> (χ ²)	Method of calculation				
Sandy Ioam (bare soil)	<mark>Bogense,</mark> Denmark	<mark>6.48</mark>	<mark>20</mark>	<mark>18.6</mark>	<mark>7.49</mark>	DFOP DT ₉₀ /3.32				
<mark>Silt Ioam</mark> (bare soil)	Castelsarrasin, France	<mark>6.06</mark>	<mark>10</mark>	<mark>15.5</mark>	<mark>12.6</mark>	<mark>SFO</mark>				
<mark>Loam</mark> (bare soil)	<mark>St. Cyprien,</mark> France	<mark>7.4</mark>	<mark>20</mark>	<mark>27.8</mark>	<mark>14.9</mark>	<mark>SFO</mark>				
Clay Ioam (bare soil)	Breitenwisch, Germany	<mark>5.32</mark>	10	<mark>9.96</mark>	<mark>11.4</mark>	<mark>SFO</mark>				

Parent	Aerobic conditions – modelling endpoints (normalisation with measured soil moisture data)									
Soil type (indicate if bare or cropped soil was used).	Location (country or USA state).	pH (CaCl₂)	Depth (cm) ^{a)}	DegT50 (d) 20°C, pF2	St. (X ²)	Method of calculation				
<mark>Clay</mark> (bare soil)	Canals, Spain	<mark>7.6</mark>	20	<mark>43.5</mark>	<mark>10.9</mark>	<mark>SFO</mark>				
<mark>Loam</mark> (bare soil)	Wilson, UK	<mark>7.07</mark>	<mark>10</mark>	<mark>12.2</mark>	<mark>18.5</mark>	<mark>SFO</mark>				
	Ge	eometric m	<mark>nean (n=6)</mark>	<mark>18.7</mark>						

pH dependence ‡ (yes / no) (if yes type of dependence) No. For metabolite CGA300406 dependency can be seen and this has been taken into account in PECgw calculations.

Soil accumulation and plateau concentration ‡

Not calculated for prosulfuron; calculated for CGA150829, CGA159902, SYN542604 and CGA349707 (see PECsoil)

Laboratory studies ‡

Parent	Anaerob	ic coi	nditions				
Soil type	Label	pН	t. °C / % MWHC	DT ₅₀ /DT ₉₀ (d)	DT ₅₀ (d) 20°C pF2/10kPa	St. (r²)	Method of calculation
Sandy Ioam	Phenyl	6.6	25 / 75% FC	89 / -	-	-	-
Sandy Ioam	Triazine	6.6	25 / 75% FC	123 / -	-	-	-
Sandy Ioam	Triazine	6.1	25 / 75% FC	138 / -	-	-	-
Geometric mean/med	ian			-	-		

Soil adsorption/desorption (Annex IIA, point 7.1.2)

Parent ‡

Fate and behaviour in the environment

Soil type	OC %	Soil pH [#]	Kd (mL/g)	Koc (mL/g)	Kf (mL/g)	Kfoc (mL/g)	1/n
Loamy sand	0.46	7.7	-	-	0.07	15.2	0.82
Sandy loam	1.97	7.8	-	-	0.27	13.7	0.85
Silt loam	1.74	6.5	-	-	0.29	16.7	0.86
Silty clay loam	0.67	6.9	-	-	0.25	37.3	0.86
Loamy sand	0.76	7.0	-	-	0.03	3.9	0.92
Sand	0.36	6.6	-	-	0.09	25.0*	1.21*
Silt loam	2.10	7.3	-	-	0.24	11.4	0.81
Silt loam	4.39	7.1	-	-	0.36	8.2	0.89
Humic silt loam	19.34	6.6	-	-	1.45	7.50	0.94
Arithmetic mean (n=8)						14.2	0.86
Geometric mean (n=8)						<mark>11.7</mark>	-
pH dependence, Yes or N	No		No				

* The 1/n value of 1.21 was originally excluded from the dataset as considered outside the range of the expected value. However, in this case, it is considered that this omission adversely affects the results of the exposure assessment.

[#] No information on which media pH was measured

CGA150829 ‡							
Soil type	OC %	Soil pH	Kd (mL/g)	Koc (mL/g)	Kf (mL/g)	Kfoc (mL/g)	1/n
Sand	0.35	7.9#	-	-	0.23	66.7	0.8702
Sandy Loam	0.99	7.8#	-	-	0.57	58.2	0.9024
Silt Loam	1.74	6.5#	-	-	0.96	55.1	0.8474
Silty Clay Loam	0.70	6.9#	-	-	1.20	172	0.8230
Loam	1.8	5.3\$	-	-	1.321	73.4	0.9183
Silt loam	2.4	6.6\$	-	-	0.481	20.0	0.9755
Clay loam	0.9	7.6\$	-	-	0.561	62.3	0.9170
Sandy loam	0.7	6.7\$	-	-	0.675	96.5	0.9498
Silt loam	1.7	6.6\$	-	-	3.147	185.1	0.9021
Sandy soil	0.58	6.2#	-	-	0.264	45.5	0.873
Sandy loam	0.46	6.3#	-	-	0.621	133.8	0.784
Silt loam	1.1	5.3#	-	-	2.36	214.2	0.841
Silty clay loam	3.0	5.7#	-	-	6.80	225.5	0.841
Silt loam	1.2	7.7#	-	-	0.225	18.8	1.05

Sandy loam	2.3	5.7#	-	-	0.682	29.7	0.94
Silt loam	2.6	6.4#	-	-	0.433	16.7	0.96
Loamy silt	0.91	6.7#	-	-	1.57	172	0.835
Silt loam	2.08	7.0#	-	-	0.44	21.3	0.873
Loamy sand	1.95	6.0#	-	-	0.30	15.4	0.909
Sandy loam	0.43	6.0#	-	-	0.32	74.4	0.840
Speyer 2.1*	0.56	<mark>6.0</mark> #	ł	-	0.2025	<mark>36</mark>	0.92
Standard soil no. 115*	1.7	<mark>7.4</mark> #	ł	-	0.6255	37	<mark>0.89</mark>
Standard soil no. 164*	<mark>3.0</mark>	6.5 [#]	ł	-	<mark>0.645</mark>	22	0.92
Standard soil no. 243*	<mark>1.1</mark>	4.3 [#]			0.337	<mark>31</mark>	<mark>0.91</mark>
Sand, Germany**	1.97	<mark>5.4</mark> #			0.37	<mark>18.92</mark>	<mark>0.640</mark>
Loam, Germany**	2.42	7.3 [#]	ł	-	<mark>0.43</mark>	17.97	<mark>0.759</mark>
Clay, Germany**	<mark>1.84</mark>	<mark>6.9</mark> #	ł	-	<mark>0.43</mark>	<mark>2.95</mark>	<mark>1.422</mark>
Arithmetic mean/media	n (n= <mark>27)</mark>					71.2/45.5 [§]	0.90/nr
Geometric mean (n=27)					<mark>45.6</mark>	-
pH dependence, Yes or	r No		No				

Fate and behaviour in the environment

[#] No information on which media pH was measured

^{\$} CaCl₂

* Endpoints derived from the study **and the second and an and an anti-** (2001) accepted in the RAR for metsulfuronmethyl, Endpoints not used in the available exposure assessment.

** Endpoints derived from the study (2006) accepted in the RAR for metsulfuron-methyl, Endpoints not used in the available exposure assessment.

[§] The available groundwater exposure assessment was based on a K_{Fee} value 64.5 mL/g and 1/n = 0.888, which resulted from the datasets available in the RAR of prosulfuron only.

CGA159902 ‡								
Soil type	OC %	Soil pH [#]	Kd (mL/g)	Koc (mL/g)	Kf (mL/g)	Kfoc (mL/g)	1/n	
Loamy sand	0.46	7.7	-	-	0.40	87.0	0.93	
Sandy loam	1.97	7.8	-	-	1.24	62.9	0.83	
Silt loam	1.74	6.5	-	-	0.77	44.3	0.81	
Silty clay loam	0.67	6.9	-	-	0.59	88.1	0.94	
Arithmetic mean (n=4)						70.6	0.88	
Geometric mean (n=4)						<mark>68.0</mark>	-	
pH dependence, Yes or No				No				

[#] No information on which media pH was measured

CGA300406 ‡

Fate and behaviour in the environment

Soil type	OC %	Soil pH [#]	Kd (mL/g)	Koc (mL/g)	Kf (mL/g)	Kfoc (mL/g)	1/n	
Loamy sand	0.42	6.5	-	-	0.53	126*	1.24*	
Sandy loam	1.0	6.8	-	-	0.49	49.0	0.87	
Loam	1.11	6.7	-	-	0.47	42.3	0.89	
Silty clay loam	2.59	6.4	-	-	1.28	49.4	0.93	
Arithmetic mean (n=3)						46.9	0.90	
Geometric mean (n=3)						<mark>46.8</mark>	-	
pH dependence, Yes or No No				No				

* The 1/n value of 1.24 was originally excluded from the dataset as considered outside the range of the expected value. However, in this case, it is considered that this omission adversely affects the results of the exposure assessment.

[#] No information on which media pH was measured

CGA325025 ‡							
Soil type	OC %	Soil pH [#]	Kd (mL/g)	Koc (mL/g)	Kf (mL/g)	Kfoc (mL/g)	1/n
Sandy loam	1.0	6.8	-	-	0.242	24.2	1.042
Sand	0.42	6.5	-	-	0.135	32.2	0.853
Loam	1.15	6.7	-	-	0.336	29.2	0.939
Clay	1.67	6.8	-	-	0.346	20.7	1.057
Arithmetic mean (n=4)						26.6	0.973
Geometric mean (n=4) 26.2 -						-	
pH dependence, Yes or No No							

[#] No information on which media pH was measured

SYN542604 ‡							
Soil type	OC %	Soil pH (CaCl ₂)	Kd (mL/g)	Koc (mL/g)	Kf (mL/g)	Kfoc (mL/g)	1/n
Sandy clay loam	2.21	5.84	-	-	3.01	136	0.88
Loam	1.97	7.77	-	-	1.14	58	0.82
Silt loam	1.14	5.38	-	-	0.98	86	0.88
Silt loam	1.72	6.61	-	-	3.84	223	0.80
Sandy loam	0.51	7.20	-	-	0.57	112	0.86
Arithmetic mean (n=5)						123	0.85
Geometric mean (n=5)					<mark>111</mark>	-	
pH dependence, Yes or No No							

CGA349707 ‡							
Soil type	OC %	Soil pH (H ₂ O)	Kd (mL/g)	Koc (mL/g)	Kf (mL/g)	Kfoc (mL/g)	1/n
Loamy sand	2.0	7.6	-	-	1.03	51.7	0.96
Silt loam	2.4	7.2	-	-	0.88	36.7	0.85
Silt loam	4.7	7.2	-	-	2.11	44.9	1.08
Arithmetic mean (n=3) 44.4 0.96						0.96	
Geometric mean (n=3) 44						<mark>44.0</mark>	-
pH dependence, Yes or No No							

SYN547308 ‡							
Soil type	<mark>OC %</mark>	<mark>Soil</mark> pH (H₂O)	<mark>Kd</mark> (mL/g)	<mark>Koc</mark> (mL/g)	<mark>Kf</mark> (mL/g)	<mark>Kfoc</mark> (mL/g)	<mark>1/n</mark>
<mark>Loam</mark>	<mark>2.3</mark>	<mark>8.3</mark>	-	-	<mark>1.49</mark>	<mark>65</mark>	<mark>0.9318</mark>
Sandy clay loam	<mark>3.0</mark>	<mark>6.5</mark>	-	-	<mark>2.89</mark>	<mark>96</mark>	<mark>0.9527</mark>
<mark>Silt Ioam¹</mark>	<mark>1.3</mark>	<mark>6.0</mark>	-	-	<mark>3.74</mark>	<mark>288</mark>	0.9501 ¹
Sandy loam	<mark>0.5</mark>	<mark>8.2</mark>	-	-	<mark>0.42</mark>	<mark>83</mark>	<mark>0.9193</mark>
<mark>Silt Ioam</mark>	<mark>1.8</mark>	<mark>6.7</mark>	-	-	<mark>2.23</mark>	<mark>124</mark>	<mark>0.9127</mark>
Arithmetic mean (n=4) (s				-	<mark>0.929</mark>		
Geometric mean (n=4) (s	<mark>oH ≥6.5)</mark>				<mark>89.5</mark>	-	
pH dependence, Yes or	Yes (conservative geometric mean was derived for soils with pH ≥ 6.5 since pH dependence could not be excluded)						

Mobility in soil (Annex IIA, point 7.1.3, Annex IIIA, point 9.1.2)

Column leaching ‡ 4 soils (OC 0.4 - 2.6 %, pH 6.4 - 6.7), triazine label, 508 mm. RA in leachates : 54 - 95 % (prosulfuron) 4 soils (OC 0.4 - 4.4 %, pH 5.7 - 7.1), phenyl label, 200 mm. RA in leachates : 1 -94 % depending on OC content (prosulfuron)

Aged residues leaching ‡	4 soils (OC 0.4 - 2.6 %, pH 6.4 - 7.0), 2 labels, 30 d incubation at 25°C, 508 mm Residue prosulfuron 70 - 84 %, metabolites < 12 % (CGA 300406) RA in leachates : 33 - 59 %, mainly prosulfuron, metabolites < 4 % each 2 soils (OC 1.7 - 2.1 %, pH 7.2 - 7.3), 2 labels, 180 d incubation at 20°C, 200 mm Residue : prosulfuron 18 - 31 %, metabolites <10 % each (CGA 159902, 150829, 300406, 349707, M5), CO ₂ 10 - 45 % RA in leachates : 0.8 - 12 % of applied to columns (prosulfuron)
Lysimeter/ field leaching studies ‡	USA, undisturbed 20 cm diameter soil columns, silt loam (1.94 % OC, pH 5.6) in Kentucky and sand soil (0.3 % OC, pH 4.9) in North Carolina, 2 labels, 44 g as/ha.
	Total residues in drainage water (LOD 0.4 µg/l) soil depth 0.90 m
	Silt loam:
	< 0.4 %, mean conc. 0.13 µg/l (phenyl); < 0.1 % (triazine)
	mean 0.98 μg/l max. 3 μg/l (phenyl); mean 0.08 μg/l max. 1 μg/l (triazine)
	Compounds in drainage water from sand soil, NC
	prosulfuron traces in initial preferential flow soil depth 0.90 m
	CGA159902 max. 2.4 μg/l
	M5 (derivative of CGA159902) max. 1 μg/l
	CGA325028 max. 0.74 µg/l
	CGA300406 max. 0.08 μg/l
	No realistic mean concentrations can be calculated for individual compounds. Triazine moiety less mobile than phenyl moiety. No CGA150829 in soil after 1 year.
	Swiss lysimeter, sandy soil (1.05 % OC, pH 6.1), phenyl label, 28 or 2 x 28 g as/ha
(Spring)	

Total residues (LOD 0.05 μg/l)	
mean concentrations, soil depth 1.2 m	
1 appl. 0.23 / 0.12 / 0.07 µg/l (year 1 / 2 / 3)	
2 appl. 0.24 / 0.31 / 0.22 µg/l (year 1 / 2 / 3)	
max. concentrations 0.46 / 0.42 µg/l (1 / 2 appl.)	
Prosulfuron, CGA159902, CGA300406,	
CGA349707, SYN542604 (M5),	
CGA325025 and unknowns < 0.1 μ g/l each.	
Total extractable RA in soil < 2.5 μ g/kg after	
3 years.	

PEC (soil) (Annex IIIA, point 9.1.3)

Parent Method of calculation	DT ₅₀ : 38.9 days (longest field DT ₅₀ , non- normalised; not used in calculation since only maximum PEC calculated) Kinetics: SFO
Application data	Number of applications: 1 Rate of application: 20 g as/ha Crop interception: 25% (maize BBCH 12- 18)
	Depth of soil layer: 5 cm Bulk density 1.5 g/cm ³

PEC(s) (mg/kg)	Single application Actual	Single application Time weighted average	Multiple application Actual	Multiple application Time weighted average
Initial	0.020		-	
Plateau concentration	Not calculated			

Metabolite CGA150829 Method of calculation	DT ₅₀ : 1000 days (longest laboratory DT ₅₀ , non-normalised) Kinetics: SFO
Application data	Number of applications: 1 Rate of application: 20 g as/ha Crop interception: 25% (maize BBCH 12- 18)
	Depth of soil layer: 5 cm

Fate and behaviour in the environment

Bulk density 1.5 g/cm³ Molecular ratio (-): 0.334 % formed: 40.6 (max. from laboratory study)

PEC (s) (mg/kg)	Single application Actual	Single application Time weighted average	Multiple application Actual	Multiple application Time weighted average
Initial	0.0027		-	
Plateau concentration*	0.0124 (5 cm)			

*minimum plateau concentration in 5 cm plus the subsequent year's application in 5 cm soil

Metabolite CGA159902 Method of calculation	DT ₅₀ : 1000 days (longest laboratory DT ₅₀ , non-normalised) Kinetics: SFO
Application data	Number of applications: 1 Rate of application: 20 g as/ha Crop interception: 25% (maize BBCH 12- 18) Depth of soil layer: 5 cm Bulk density 1.5 g/cm ³ Molecular ratio (-): 0.604 % formed: 47.4 (max. from laboratory study)

PEC _(s) (mg/kg)	Single application Actual	Single application Time weighted average	Multiple application Actual	Multiple application Time weighted average
Initial	0.0057		-	
Plateau concentration*	0.0257 (5 cm) 0.0107 (20 cm)			

*minimum plateau concentration in 5 or 20 cm plus the subsequent year's application in 5 cm soil

Metabolite CGA300406 Method of calculation	DT ₅₀ : 47.5 days (longest laboratory DT ₅₀ , non-normalised; not used in calculation since only maximum PEC calculated) Kinetics: SFO
Application data	Number of applications: 1

Rate	of appli	cation	: 20 g	as/ha		
Crop 18)	interce	eption:	25%	(maize	BBCH	12-
Dept	h of soil	layer:	5 cm			
Bulk	density	1.5 g/d	cm ³			
Mole	cular ra	tio (-):	0.967			
% fo study	ormed: ′)	24.0	(max	. from	labora	tory

PEC _(s) (mg/kg)	Single application Actual	Single applic Time averag	e ation weighted ge	Multiple application Actual	Multiple application Time weighted average
Initial	0.0046			-	
Plateau concentration	Not calculated				
Metabolite CGA325025 Method of calculation			DT ₅₀ : 102 non-norma since only Kinetics: S	2 days (longest alised; not usec maximum PEC c SFO	laboratory DT _{50,} d in calculation alculated)
Application data			Number o Rate of ap Crop inter 18) Depth of s Bulk dens Molecular % former study)	f applications: 1 oplication: 20 g as rception: 25% (m coil layer: 5 cm ity 1.5 g/cm ³ ratio (-): 0.964 d: 17.4 (max.	/ha naize BBCH 12- from laboratory

PEC _(s) (mg/kg)	Single application Actual	Single application Time weighted average	Multiple application Actual	Multiple application Time weighted average
Initial	0.0034		-	
Plateau concentration	Not calculated			

Metabolite SYN542604 Method of calculation DT_{50} : 184 days (longest laboratory DT_{50} , non-normalised)

	Kinetics: SFO
Application data	Number of applications: 1
	Rate of application: 20 g as/ha
	Crop interception: 25% (maize BBCH 12- 18)
	Depth of soil layer: 5 cm
	Bulk density 1.5 g/cm ³
	Molecular ratio (-): 0.909
	% formed: 30.8 (max. from laboratory study)

PEC _(s) (mg/kg)	Single application Actual	Single application Time weighted average	Multiple application Actual	Multiple application Time weighted average
Initial	0.0056		-	
Plateau concentration*	0.0078 (5 cm)			

*minimum plateau concentration in 5 cm plus the subsequent year's application in 5 cm soil

Metabolite CGA349707 Method of calculation	DT ₅₀ : 737 days (longest laboratory DT ₅₀ , non-normalised) Kinetics: SFO				
Application data	Number of applications: 1				
	Rate of application: 20 g as/ha				
	Crop interception: 25% (maize BBCH 12- 18)				
	Depth of soil layer: 5 cm				
	Bulk density 1.5 g/cm ³				
	Molecular ratio (-): 0.807				
	% formed: 22.6 (max. from laboratory study)				

PEC(s) (mg/kg)	Single application Actual	Single application Time weighted average	Multiple application Actual	Multiple application Time weighted average
Initial	0.0036		-	
Plateau concentration*	0.0128 (5 cm)			

*minimum plateau concentration in 5 cm plus the subsequent year's application in 5 cm soil

Route and rate of degradation in water (Annex IIA, point 7.2.1)

Hydrolytic degradation of the active substance and metabolites > 10 % ‡	pH 5 (25°C) DT ₅₀ 5 - 12 d CGA159902 (phenyl sulfonamide) 58 % CGA150829 (triazine amine) 43 % CGA325030 (polyimide) 22-31 % G28533 16 % pH 7 (25°C) DT ₅₀ 424 - 651 d pH 9 (25°C) DT ₅₀ 682 - 1690 d
Photolytic degradation of active substance and metabolites above 10 % ‡	(no major metabolite at pH 7 and 9) Not significant. DT ₅₀ 178 - 337 d (darkness, pH 9, 25°C) DT ₅₀ 257 - 198 d (sunlight)
Quantum yield of direct phototransformation in water at Σ > 290 nm	No major metabolites. Not investigated as ε <10 at λ >290 nm
Readily biodegradable ‡ (yes/no)	Not readily biodegradable

Degradation in water / sediment

Parent	Distribution (max. in water 100 % after 0 days; max. in sediment 27.1 % after 60 days at 20°C)										
Water / sediment system	pH wate r phas e	pH sed (KCI)	t. °C	DT ₅₀ - DT ₉₀ whole sys.	St. (X ²)	DisT50- DisT90 water	St. (χ ²)	DT ₅₀ - DT ₉₀ sed	St. (X ²)	Method of calculati on	
Pond	-	6.30	20	170 – 566	6. 1	89.5 – 297	15. 3	-	-	SFO	
Rhine river	-	7.20	20	119 – 394	5. 6	86.2 – 286	12. 7	-	-	SFO	
Pond	-	7.20	20	205 –	2.	115 –	14.	-	-	SFO	

Fate and behaviour in the environment

				682	8	859	9			
Rhine river	-	7.20	20	216 – 718	6. 2	127 – 423	17. 7	-	-	SFO
Geometric	: mean	(n=4)		173		103		-		-

	Four metabolites >10 % AR were formed. No DT_{50} values were calculated for metabolites.											
	CGA1	59902										
	Distrik after 3	Distribution (max. in water 2.7 % after 59 days; max. in sediment 20.5 % after 365 days; max. in whole system 21.6 %)										
Metabolit	CGA3	00406										
е	Distrik % afte	oution(er 270 d	max. ir days; m	n water 24.6 nax. in who	5 % a le sy	after 181 d stem 34.3	ays; ı %)	max. in sec	limei	nt 15.97		
	<u>SYN5</u>	SYN542604										
	Distribution (max. in whole system 24.8 %)											
	CGA3	<u>CGA349707</u>										
	Distrib	oution (max. ir	n whole sys	tem	16.1 %)						
Water / sediment system	pH wate r phas e	pH sed	t. °C	DT ₅₀ - DT ₉₀ whole sys.	St. (X ²)	DT ₅₀ - DT ₉₀ water	St. (χ ²)	DT ₅₀ - DT ₉₀ sed	St. (X ²)	Method of calculati on		
Pond	-	-	-	-	-	-	-	-	-	-		
Geometric	: mean			-		-		-		-		

Mineralization and non extractable residues										
Water / sediment system	pH water phase	pH sed (KCl)	Mineralization x % after n d. (end of the study)	Non-extractable residues in sed. max x % after n d	Non-extractable residues in sed. max x % after n d (end of the study)					
Pond	-	6.30	6.43 % after 365 d (study end)	22.34 % after 365 d (study end)	22.34 % after 365 d (study end)					
Rhine river	-	7.20	4.57 % after 365 d (study end)	18.18 % after 365 d (study end)	18.18 % after 365 d (study end)					
Pond	-	7.20	12.71 % after 362 d (study end)	11.34 % after 362 d (study end)	11.34 % after 362 d (study end)					

Fate and behaviour in the environment

Rhine river	- 7.20	13.23 % after 362 d (study end)	10.0 % after 270 d	9.54 % after 362 d (study end)
-------------	--------	---------------------------------------	--------------------	-----------------------------------

PEC (surface water) and PEC sediment (Annex IIIA, point 9.2.3)

Parent Parameters used in FOCUSsw step 1	Models used: Steps1-2 v.1.1; SWASH 3.1; SWAN v1.1.4		
and 2	Molar mass = 419.4 g/mol		
	Water solubility = 43000 mg/L		
	Kfoc = 14.5 mL/g		
	DT ₅₀ in soil = 62.1 days (normalised laboratory geometric mean, SFO, n=10)		
	DT ₅₀ in water/sediment system: 182 days (geometric mean of 6 systems, SFO). The correct value would be 173 days.		
	DT_{50} in water: 182 days. The correct value would be 173 days.		
	DT ₅₀ in sediment: 1000 days		
Parameters used in FOCUSsw step 3	Additional parameters to Steps1-2:		
(if performed)	Vapour pressure = 0 Pa		
	1/n = 0.88		
	Plant uptake factor = 0		
Application rate	Number of applications: 1		
	Rate of application: 20 g as/ha		
	Steps1-2: N+S Europe, March-May, Minimal crop cover		
	Step3 and 4: application window starting 7 days post-emergence		

FOCUS STEP 1 Scenario	Day after overall maximum	PECsw (µg/L)		PEC _{SED} (µg/kg)	
		Actual	TWA	Actual	TWA
	0 h	6.73		0.95	

FOCUSDay afterSTEP 2overallScenariomaximum	Day after	PECsw (µg/L)		PEC _{SED} (µg/kg)	
	overall maximum	Actual	TWA	Actual	TWA
Northern EU	0 h	1.12		0.16	
Southern EU	0 h	2.06		0.29	

FOCUS	Water	Day after	PECsw (µg/l	_)	PEC _{SED} (µg/kg)	
STEP 3 Scenario	body	overall maximum	Actual	TWA	Actual	TWA
D3	ditch	0 h	0.283		0.373	
Vredepeel		7 d	-	0.194	-	-
D4 Skousbo	pond	0 h	0.528		0.831	
		7 d	-	0.527	-	-
D4 Skousbo	stream	0 h	0.283		0.399	
		7 d	-	0.271	-	-
D5 La	pond	0 h	0.251		0.441	
Jaillière		7 d	-	0.250	-	-
D5 La	stream	0 h	0.170		0.151	
Jaillière		7 d	-	0.108	-	-
D6 Thiva	ditch	0 h	0.141		0.101	
		7 d	-	0.064	-	-
R1	pond	0 h	0.008		0.009	
Weiherbach		7 d	-	0.008	-	-
R1	stream	0 h	0.266		0.021	
Weiherbach		7 d	-	0.018	-	-
R2 Porto	stream	0 h	0.730		0.086	
		7 d	-	0.065	-	-
R3 Bologna	stream	0 h	0.903		0.089	
		7 d	-	0.084	-	-
R4 Roujan	stream	0 h	0.960		0.121	
		7 d	-	0.104	-	-

FOCUS	Water		PECsw (µg/L)		PEC _{SED} (µg/kg)	
STEP 4 10 m VFS, no drift mitigation Scenario	body	Day after overall maximum	Actual	TWA	Actual	TWA
R1	pond	0 h	0.006		0.006	
Weiherbach		7 d	-	0.005	-	-
R1	stream	0 h	0.109		0.009	

Fate and behaviour in the environment

Weiherbach		7 d	-	0.007	-	-
R2 Porto	stream	0 h	0.320		0.039	
		7 d	-	0.029	-	-
R3 Bologna	stream	0 h	0.409		0.042	
		7 d	-	0.038	-	-
R4 Roujan	stream	0 h	0.437		0.057	
		7 d	-	0.047	-	-

FOCUS	Water		PECsw (µg/L)		PEC _{SED} (µg/kg)	
STEP 4 20 m VFS, no drift mitigation Scenario	body	Day after overall maximum	Actual	TWA	Actual	TWA
R1	pond	0 h	0.005		0.005	
Weiherbach		7 d	-	0.004	-	-
R1	stream	0 h	0.071		0.005	
Weiherbach		7 d	-	0.004	-	-
R2 Porto	stream	0 h	0.166		0.021	
		7 d	-	0.016	-	-
R3 Bologna	stream	0 h	0.214		0.024	
		7 d	-	0.022	-	-
R4 Roujan	stream	0 h	0.229		0.031	
		7 d	-	0.025	-	-

FOCUS	Water		PECsw (µg/L)		PEC _{SED} (µg/kg)	
STEP 4 10 m VFS, 10 m non- spray buffer Scenario	body	Day after overall maximum	Actual	TWA	Actual	TWA
D3	ditch	0 h	0.196		0.373	
Vredepeel		7 d	-	0.184	-	-
D4 Skousbo	pond	0 h	0.528		0.830	
		7 d	-	0.527	-	-
D4 Skousbo	stream	0 h	0.283		0.369	

Fate and behaviour in the environment

		7 d	-	0.271	-	-
D5 La	pond	0 h	0.251		0.441	
Jaillière		7 d	-	0.250	-	-
D5 La	stream	0 h	0.125		0.149	
Jaillière		7 d	-	0.108	-	-
D6 Thiva	ditch	0 h	0.081		0.101	
		7 d	-	0.064	-	-
R1	pond	0 h	0.004		0.005	
Weiherbach		7 d	-	0.004	-	-
R1	stream	0 h	0.109		0.009	
Weiherbach		7 d	-	0.007	-	-
R2 Porto	stream	0 h	0.320		0.039	
		7 d	-	0.028	-	-
R3 Bologna	stream	0 h	0.409		0.041	
		7 d	-	0.038	-	-
R4 Roujan	stream	0 h	0.437		0.056	
		7 d	-	0.047	-	-

FOCUS	Water		PEC _{SW} (µg/L)		PEC _{SED} (µg/kg)	
STEP 4 20 m VFS, 20 m non- spray buffer Scenario	body	Day after overall maximum	Actual	TWA	Actual	TWA
D3	ditch	0 h	0.188		0.372	
Vredepeel		7 d	-	0.184	-	-
D4 Skousbo	pond	0 h	0.528		0.830	
		7 d	-	0.527	-	-
D4 Skousbo	stream	0 h	0.283		0.369	
		7 d	-	0.271	-	-
D5 La	pond	0 h	0.250		0.440	
Jaillière		7 d	-	0.250	-	-
D5 La Jaillière	stream	0 h	0.125		0.149	
		7 d	-	0.108	-	-
D6 Thiva	ditch	0 h	0.081		0.101	

Fate and behaviour in the environment

		7 d	-	0.064	-	-
R1	pond	0 h	0.003		0.003	
Weiherbach		7 d	-	0.002	-	-
R1	stream	0 h	0.055		0.005	
Weiherbach		7 d	-	0.004	-	-
R2 Porto	stream	0 h	0.166		0.021	
		7 d	-	0.015	-	-
R3 Bologna	stream	0 h	0.214		0.022	
		7 d	-	0.020	-	-
R4 Roujan	stream	0 h	0.229		0.030	
		7 d	-	0.025	-	-

Metabolite CGA150829	Molar mass = 140.1 g/mol		
Parameters used in FOCUSsw step 1 and 2	Water solubility = 1000 mg/L (considered conservative)		
	Kfoc = 73.9 mL/g. Correct value would be 64.5 mL/g.		
	DT ₅₀ in soil = 259 days (normalised laboratory median, SFO, n=11)		
	DT ₅₀ in water/sediment system: 1000 days (default)		
	DT ₅₀ in water: 1000 days (default)		
	DT ₅₀ in sediment: 1000 days (default)		
	Max. occurrence in water/sediment system: 7.9%		
	Max. occurrence in soil: 40.6%		
Parameters used in FOCUSsw step 3 (if performed)	Not performed		
Application rate	Number of applications: 1		
	Rate of application: 20 g as/ha		
	Steps1-2: N+S Europe, March-May, Minimal crop cover		
Main routes of entry	Drift, drainage and run-off		

FOCUS Day after	PECsw (µg/L)		PEC _{SED} (µg/kg)		
STEP 1 Scenario	overall maximum	Actual	TWA	Actual	TWA
	0 h	0.83		0.61	

Fate and behaviour in the environment

FOCUS	Day after	PECsw (µg/L)		PEC _{SED} (µg/kg)	
STEP 2 Scenario	overall maximum	Actual	TWA	Actual	TWA
Northern EU	0 h	0.13		0.09	
Southern EU	0 h	0.25		0.18	

Metabolite CGA159902	Molar mass = 253.2 g/mol
Parameters used in FOCUSsw step 1 and 2	Water solubility = 1000 mg/L (considered conservative)
	Kfoc = 70.6 mL/g
	DT ₅₀ in soil = 188 days (normalised laboratory geometric mean, SFO, n=5)
	DT ₅₀ in water/sediment system: 1000 days (default)
	DT ₅₀ in water: 1000 days (default)
	DT ₅₀ in sediment: 1000 days (default)
	Max. occurrence in water/sediment system: 21.6%
	Max. occurrence in soil: 47.4%
Parameters used in FOCUSsw step 3 (if performed)	Not performed
Application rate	Number of applications: 1
	Rate of application: 20 g as/ha
	Steps1-2: N+S Europe, March-May, Minimal crop cover
Main routes of entry	Drift, drainage and run-off

FOCUS Day	Day after	PECsw (µg/L)	PEC _{sw} (µg/L)		PEC _{SED} (µg/kg)	
STEP 1 Scenario	overall maximum	Actual	TWA	Actual	TWA	
	0 h	1.77		1.25		

FOCUS	Day after	PECsw (µg/L)		PEC _{SED} (µg/kg)	
STEP 2 Scenario	overall maximum	Actual	TWA	Actual	TWA
Northern EU	0 h	0.28		0.20	
Southern EU	0 h	0.54		0.38	

Metabolite CGA300406

Parameters used in FOCUSsw step 1

Molar mass = 405.4 g/mol Water solubility = 1000 mg/L (considered

and 2	conservative)
	Kfoc = 46.9 mL/g
	DT ₅₀ in soil = 9.9 days (normalised laboratory geometric mean, SFO, n=5)
	DT ₅₀ in water/sediment system: 1000 days (default)
	DT ₅₀ in water: 1000 days (default)
	DT ₅₀ in sediment: 1000 days (default)
	Max. occurrence in water/sediment system: 34.3%
	Max. occurrence in soil: 24.0%
Parameters used in FOCUSsw step 3 (if performed)	Not performed
Application rate	Number of applications: 1
	Rate of application: 20 g as/ha
	Steps1-2: N+S Europe, March-May, Minimal crop cover
Main routes of entry	Drift, drainage and run-off

FOCUS D	Day after	PECsw (µg/L)	PEC _{SED} (µg/kg)		g)
STEP 1 Scenario	overall maximum	Actual	TWA	Actual	TWA
	0 h	1.52		0.71	

FOCUS	Day after	PECsw (µg/L)		PEC _{SED} (µg/kg)	
STEP 2 Scenario	overall maximum	Actual	TWA	Actual	TWA
Northern EU	0 h	0.22		0.10	
Southern EU	0 h	0.39		0.18	

Metabolite CGA325025	Molar mass = 404.4 g/mol
Parameters used in FOCUSsw step 1 and 2	Water solubility = 1000 mg/L (considered conservative)
	Kfoc = 26.6 mL/g
	DT_{50} in soil = 62.4 days (normalised laboratory geometric mean, SFO, n=3)
	DT ₅₀ in water/sediment system: 1000 days (default)
	DT ₅₀ in water: 1000 days (default)
	DT ₅₀ in sediment: 1000 days (default)
	Max. occurrence in water/sediment system:

Fate and behaviour in the environment

	7.0%
	Max. occurrence in soil: 17.4%
Parameters used in FOCUSsw step 3 (if performed)	Not performed
Application rate	Number of applications: 1 Rate of application: 20 g as/ha Steps1-2: N+S Europe, March-May, Minimal crop cover
Main routes of entry	Drift, drainage and run-off

FOCUS	Day after PECsw (µg) PEC _{SED} (µg/kg)		g)
STEP 1 Scenario	overall maximum	Actual	TWA	Actual	TWA
	0 h	1.09		0.29	

FOCUS Day after		PEC _{sw} (µg/L)		PEC _{SED} (µg/kg)	
STEP 2 Scenario	overall maximum	Actual	TWA	Actual	TWA
Northern EU	0 h	0.17		0.04	
Southern EU	0 h	0.32		0.09	

Metabolite SYN542604	Molar mass = 381.3 g/mol
Parameters used in FOCUSsw step 1 and 2	Water solubility = 1000 mg/L (considered conservative)
	Kfoc = 123 mL/g
	DT_{50} in soil = 74.7 days (normalised laboratory geometric mean, SFO, n=6). Correct value would be 84.6 days.
	DT ₅₀ in water/sediment system: 1000 days (default)
	DT ₅₀ in water: 1000 days (default)
	DT ₅₀ in sediment: 1000 days (default)
	Max. occurrence in water/sediment system: 24.8%
	Max. occurrence in soil: 30.8%
Parameters used in FOCUSsw step 3 (if performed)	Not performed
Application rate	Number of applications: 1
	Rate of application: 20 g as/ha
	Steps1-2: N+S Europe, March-May,

FOCUS	Day after	PEC _{sw} (µg/L)		PEC _{SED} (µg/kg)	
STEP 2 Scenario	overall maximum	Actual	TWA	Actual	TWA
Northern EU	0 h	0.19		0.08	
Southern EU	0 h	0.36		0.16	

PEC (ground water) (Annex IIIA, point 9.2.1)

Method of calculation and type of study (<i>e.g.</i> modelling, field leaching, lysimeter	Models_used:_FOCUS-PELMO_4.4.3_and FOCUS-PEARL 4.4.4
)	Input parameters for prosulfuron:
	<mark>Molar mass = 419.4 g/mol</mark>
	<mark>Water_solubility = 43000 mg/L (25°C),</mark> 86000 mg/L (35°C)
	<mark>Vapour pressure = 3.5 x 10⁻⁶ Pa (25°C), 1.4</mark> x 10⁻⁵ Pa (35°C)
	<mark>Kfoc = 14.5 mL/g; Kfom = 8.4 mL/g. Correct</mark> <mark>Kfoc_would_be_14.2_mL/g_(used_by_the</mark> <mark>RMS).</mark>
	1/n = 0.88. Correct value would be 0.869 (used by the RMS).
	<mark>DT₅₀ = 62.1 days (normalised laboratory</mark> geometric mean, SFO, n=10)
	Plant uptake factor = 0
	Input parameters for CGA150829:
	Molar mass = 140.1 g/mol
	Water_solubility = 1000 mg/L (considered conservative)
	Vapour pressure = 0 Pa
	Kfoc = 64.5 mL/g
	<mark>1/n = 0.888</mark>
	DT₅₀ = 259 days (normalised laboratory median, SFO, n=10)
	<mark>ffM = 0.26 (from prosulfuron)</mark>
	Plant uptake factor = 0
	Input parameters for CGA159902:
	$\frac{\text{Molar mass} = 253.2 \text{ g/mol}}{100000000000000000000000000000000000$
	vvater_solubility = 1000 mg/L (considered conservative)

Vapour pressure = 0 Pa
<mark>Kfoc = 70.6 mL/g; </mark>
<mark>1/n = 0.88</mark>
DT50 = 124 days (normalised laboratory
geometric mean, SFO, n=3). Correct value
would be 188 days (normalised laboratory
geometric mean, SFO, n=5; used by the
RMS)
ttM = 0.36 (from prosulturon, n=1). Correct
Value would be 0.40 (n=2; used by the
Rient untelse fester 0
Plant uptake lactor = 0
Input parameters for CGA300406:
Molar mass = 405.4 g/mol
Water solubility = 1000 mg/L (considered
conservative)
Vapour pressure = 0 Pa
Kfoc = 46.9 mL/g;
1/n = 0.90
DT₅₀ = 30.2 days (maximum laboratory
DT₅₀ representing alkaline conditions,
SFO); 2.6 days (minimum laboratory DT ₅₀
representing alkaline conditions, SFO)
ff M = 0.43 (from prosulfuron)
Plant uptake factor = 0
Input parameters for CGA325025:
<mark>Molar mass = 404.4 g/mol</mark>
Water_solubility = 1000 mg/L (considered
conservative)
Vapour pressure = 0 Pa
<mark>Kfoc = 26.6 mL/g; </mark>
1/n = 0.97
DT50 = 62.4 days (normalised laboratory
geometric mean, SFO, n=3)
f fM = 0.12 (from CGA300406)
Plant uptake factor = 0
Input parameters for SVN542604.
Molor mass - 201.0 r/mol
iviolar mass = 381.3 g/mol
water solubility = 1000 mg/L (considered

```
Vapour pressure = 0 Pa
Kfoc = 123 mL/g; Kfom = 71.0 mL/g
<mark>1/n = 0.85</mark>
DT<sub>50</sub> = 84.6 days (normalised laboratory
<del>geometric mean, SFO, n=8).</del>
ffM = 0.88 (from CGA300406)
Plant uptake factor = 0
Input parameters for CGA349707:
Molar mass = 338.3 g/mol
Water solubility = 1000 mg/L (considered
conservative)
<del>Vapour pressure = 0 Pa</del>
Kfoc = 44.4 mL/g; Kfom = 25.8 mL/g
<del>1/n = 0.96</del>
DT<sub>50</sub> = 153 days (normalised laboratory
geometric mean, SFO, n=4)
ffM = 0.86 (from SYN542604)
Plant uptake factor = 0
Models used: FOCUS-PEARL 4.4.4
The following PECgw were calculated in a
context of amendment of the approval
conditions (to remove the restriction to
application once every 3 years) and to
respond to Data requirement by EFSA.
Input parameters for prosulfuron:
Molar mass = 419.4 g/mol
Water solubility = 43000 mg/L (20°C),
86000 mg/L (30°C)
Vapour pressure = 0 Pa (20°C), 0 Pa
(30°C)
Kfoc = 11.7 mL/g (geometric mean, n=8)
1/n = 0.869
DT<sub>50</sub> = 18.7 days (normalised field
geometric mean, pseudo-SFO, n=6).
Plant uptake factor = 0.15
Input parameters for prosulfuron triazine
amine (CGA150829):
Molar mass = 140.1 g/mol
```

Water solubility = 1000 mg/L (considered conservative) Vapour pressure = 0 Pa Kfoc = 45.6 mL/q (n=27)1/n = 0.9 (n=27) $DT_{50} = 216$ days (normalised laboratory, median, SFO, n= 18) ffM = 0.28 (from prosulfuron). Plant uptake factor = 0 Input parameters for prosulfuron phenyl sulfonamide (CGA159902): Molar mass = 253.2 g/mol Water solubility = 1000 mg/L (considered conservative) Vapour pressure = 0 Pa Kfoc = 68.0 mL/g (geometric mean, n=4); Kfom = 39.4 mL/g 1/n = 0.88 DT₅₀ = 188 days (normalised laboratory geometric mean, SFO, n=5) ffM = 0.43 (from prosulfuron) Plant uptake factor = 0Input parameters for O-desmethylprosulfuron (CGA300406): Molar mass = 405.4 g/mol Water solubility = 1000 mg/L (considered conservative) Vapour pressure = 0 Pa Kfoc = 46.8 mL/g (geometric mean, n=3); Kfom = 27.1 mL/g 1/n = 0.90DT₅₀ = 30.2 days (maximum laboratory DT₅₀ representing alkaline conditions, SFO): 2.6 days (minimum laboratory DT₅₀ representing acidic conditions, SFO) ffM = 0.47 (from prosulfuron). Plant uptake factor = 0Input parameters for demethoxy aminoprosulfuron (CGA 325025): Molar mass = 404.4 g/mol

Water solubility = 1000 mg/L (considered conservative) Vapour pressure = 0 Pa Kfoc = 26.2 mL/g (geometric mean, n=4); Kfom = 15.2 mL/q1/n = 0.973 $DT_{50} = 62.4$ days (normalised laboratory geometric mean, SFO, n=3) ffM = 0.12 (from O-desmethyl-prosulfuron (CGA300406)) Plant uptake factor = 0Input parameters for SYN542604: Molar mass = 381.3 g/mol Water solubility = 1000 mg/L (considered conservative) Vapour pressure = 0 Pa Kfoc = 111 mL/g (geometric mean, n=5); Kfom = 64.4 mL/g 1/n = 0.85 $DT_{50} = 84.6$ days (normalised laboratory geometric mean, SFO, n=8). ffM = 0.88 (from O-desmethyl-prosulfuron (CGA300406)) Plant uptake factor = 0Input parameters for CGA349707: Molar mass = 338.3 g/mol Water solubility = 1000 mg/L (considered conservative) Vapour pressure = 0 Pa Kfoc = 44.0 mL/g (geometric mean, n=3); Kfom = 25.5 mL/g1/n = 0.96 $DT_{50} = 153$ days (normalised laboratory geometric mean, SFO, n=4) ffM = 0.86 (from SYN542604) Plant uptake factor = 0 Input parameters for SYN547308: Molar mass = 449.4 g/mol Water solubility = 1000 mg/L (considered

Application rate

Fate and behaviour in the environment

conservative)
Vapour pressure = 0 Pa
Kfoc = 89.5 mL/g; Kfom = 51.9 mL/g (geometric mean for soils with pH ≥ 6.5)
<mark>1/n = 0.929</mark>
DT ₅₀ = 67.1 days (normalised laboratory geometric mean, SFO, n=4)
ffM = 0.5 (from prosulfuron)
Plant uptake factor = 0
Number of applications: 1
Rate of application: 20 g as/ha
Application date: 3 days post-emergence
Crop interception: 25% (maize BBCH 12- 18)

Crop ir

PEC (gw) – FOCUS modelling result (80th percentile annual average concentration at 1m)

PECgw simulations for prosulfuron, CGA300406, SYN542604, CGA349707, CGA150829, CGA159902, SYN547308 and CGA325025 (with FOCUS PEARL v4.4.4) – using of DT_{50} of 18.7 for prosulfuron, a maximum DT50 of 30.2 d for CGA 300406 and a DT50 of 216 d for CGA 150829. Values above 0.1µg/l in bold. Only results using FOCUS PEARL v4.4.4 and using the maximum DT50 of 30.2 d for metabolite CGA300406 are presented as this combination produced the highest predicted concentrations.

Crop	<mark>Scenario</mark>	80 th percentile PECgw at 1m depth (µg/l)				
-		Prosulfuron	CGA300406	<mark>SYN542604</mark>	CGA349707	
Maize	Chateaudun	<mark>0.043</mark>	<mark>0.038</mark>	<mark>0.056</mark>	<mark>0.754</mark>	
<mark>1 x 20 g</mark>	Hamburg	<mark>0.106</mark>	<mark>0.076</mark>	<mark>0.081</mark>	<mark>0.962</mark>	
<mark>a.s./ha</mark>	Kremsmunster	<mark>0.069</mark>	<mark>0.069</mark>	<mark>0.076</mark>	<mark>0.644</mark>	
Annual	Okehampton	<mark>0.111</mark>	<mark>0.086</mark>	<mark>0.090</mark>	<mark>0.543</mark>	
Maize	Chateaudun	<mark>0.024</mark>	<mark>0.021</mark>	<mark>0.025</mark>	<mark>0.376</mark>	
<mark>1 x 20 g</mark>	Hamburg	<mark>0.055</mark>	<mark>0.031</mark>	<mark>0.036</mark>	<mark>0.436</mark>	
<mark>a.s./ha</mark>	Kremsmunster	<mark>0.037</mark>	<mark>0.032</mark>	<mark>0.032</mark>	<mark>0.326</mark>	
<mark>1 year in</mark>	Okehampton	<mark>0.056</mark>	<mark>0.046</mark>	<mark>0.038</mark>	<mark>0.263</mark>	
2						
<mark>Crop</mark>	<mark>Scenario</mark>	80 th percentile	PECgw at 1m	depth (µg/l)		
		CGA150829	CGA159902	<mark>SYN547308</mark>	CGA325025	
<mark>Maize</mark>	Chateaudun	<mark>0.194</mark>	<mark>0.293</mark>	<mark>0.135</mark>	<mark>0.083</mark>	
<mark>1 x 20 g</mark>	Hamburg	<mark>0.234</mark>	<mark>0.370</mark>	<mark>0.200</mark>	<mark>0.123</mark>	
<mark>a.s./ha</mark>	Kremsmunster	<mark>0.174</mark>	<mark>0.274</mark>	<mark>0.177</mark>	<mark>0.083</mark>	
<mark>Annual</mark>	Okehampton	<mark>0.162</mark>	<mark>0.299</mark>	<mark>0.220</mark>	<mark>0.075</mark>	
Maize	Chateaudun	<mark>0.097</mark>	<mark>0.139</mark>	<mark>0.071</mark>	<mark>0.043</mark>	
<mark>1 x 20 g</mark>	Hamburg	<mark>0.107</mark>	<mark>0.163</mark>	<mark>0.094</mark>	<mark>0.059</mark>	
a.s./ha	Kremsmunster	<mark>0.088</mark>	<mark>0.131</mark>	<mark>0.083</mark>	<mark>0.041</mark>	

1	year in	Okehampton	<mark>0.078</mark>	<mark>0.138</mark>	<mark>0.105</mark>	<mark>0.039</mark>
2	2					

	PEARL 4.	4.4	PELMO 4	.4. 3			
	Parent (µg/L)	CGA159902 (µg/L)	Parent (µg/L)	CGA159902 (µg/L)			
Chateaudun	1.038	0.198	0.929	0.201			
Hamburg	1.677	0.215	1.329	0.185			
Jokioinen	-	-	-	-			
Kremsmunster	1.035	0.180	1.114	0.182			
Okehampton	1.044	0.156	1.019	0.149			
Piacenza	0.795	0.197	0.838	0.157			
Porto	0.458	0.080	0.487	0.080			
Sevilla	0.247	0.056	0.271	0.047			
Thiva	0.976	0.285	0.770	0.242			

Application every year (modelling by the Notifier)

Modelling by the RMS with the "correct" values mentioned in the table of input parameters:

Application every 3rd year; PECgw for CGA159902.

	Scenario	Parent	Metabolite (µg/L)
		(µg/∟)	CGA159902
9	Chateaudun	0.308	0.116
naiz	Hamburg	0.406	0.099
1.3/ 1	Jokioinen	-	-
4	Kremsmunster	0.379	0.095
FWC	Okehampton	0.359	0.077
뷥	Piacenza	0.244	0.076
	Porto	0.136	0.050
	Sevilla	0.075	0.028
	Thiva	0.265	0.136

Fate and behaviour in the environment

DT₅₀ of <u>30.2</u> days for CGA300406 in <u>alkaline</u> soils.

	Cooperie	Parent	Metabolite (µ	Aetabolite (µg/L)					
	Scenano	(µg/L)	CGA150829	CGA159902	CGA300406	SYN542604	CGA349707	CGA325025	
	Chateaudun	0.887	0.183	-	0.126	0.081	0.703	0.099	
aiz(Hamburg	1.274	0.164	-	0.132	0.094	0.642	0.086	
.3/m	Jokioinen	-	-	-	-	-	-	-	
4.4	Kremsmunster	1.059	0.155	-	0.129	0.074	0.548	0.098	
MO	Okehampton	0.987	0.113	-	0.107	0.057	0.359	0.074	
DEL	Piacenza	0.807	0.133	-	0.105	0.058	0.460	0.079	
4	Porto	0.466	0.082	-	0.046	0.045	0.358	0.028	
	Sevilla	0.256	0.088	-	0.027	0.042	0.491	0.015	
	Thiva	0.749	0.261	-	0.110	0.092	0.958	0.108	

Application every year

Application every 3rd year

	Soonaria	Parent	arent Metabolite (µg/L)					
	Эсенано	(µg/L)	CGA150829	CGA159902	CGA300406	SYN542604	CGA349707	CGA325025
đ	Chateaudun	0.308	0.061	-	0.041	0.028	0.251	0.030
iaize	Hamburg	0.406	0.050	-	0.042	0.029	0.210	0.026
.3/m	Jokioinen	1	-	-	4	-	-	-
4 4	Kremsmunster	0.379	0.048	-	0.042	0.025	0.199	0.029
M O	Okehampton	0.359	0.036	-	0.037	0.019	0.121	0.023
Щ	Piacenza	0.244	0.037	-	0.037	0.019	0.142	0.022
	Porto	0.136	0.027	-	0.014	0.014	0.108	0.008
	Sevilla	0.075	0.021	-	0.006	0.012	0.136	0.004
	Thiva	0.265	0.081	-	0.035	0.032	0.356	0.029

Fate and behaviour in the environment

DT₅₀ of <u>2.6</u> days for CGA300406 in <u>acidic</u> soils. Application every year

	Seconaria	Parent	Metabolite (µg/L)						
	Scenano	(µg/L)	CGA150829	CGA159902	CGA300406	SYN542604	CGA349707	CGA325025	
đ	Chateaudun	0.887	0.183	-	0.008	0.080	0.698	0.085	
aize	Hamburg	1.27 4	0.164	-	0.014	0.093	0.658	0.082	
<u>3/m</u>	Jokioinen	-	-	-	-	-	-	-	
4	Kremsmunster	1.059	0.155	-	0.009	0.075	0.564	0.087	
O M	Okehampton	0.987	0.113	-	0.009	0.057	0.390	0.063	
급	Piacenza	0.807	0.133	-	0.009	0.057	0.475	0.069	
	Porto	0.466	0.082	-	0.003	0.040	0.356	0.018	
	Sevilla	0.256	0.088	-	0.002	0.036	0.467	0.013	
	Thiva	0.749	0.261	-	0.007	0.083	0.908	0.077	

Application every 3rd year

	Soonaria	Parent	Metabolite (µg/L)					
	Эсенано	(µg/L)	CGA150829	CGA159902	CGA300406	SYN542604	CGA349707	CGA325025
4	Chateaudun	0.308	0.061	-	0.003	0.027	0.246	0.026
aize	Hamburg	0.406	0.050	4	0.004	0.028	0.213	0.024
.3/m	Jokioinen	-	-	-	-	-	-	-
4. 4.	Kremsmunster	0.379	0.048	-	0.003	0.025	0.198	0.025
MO	Okehampton	0.359	0.036	-	0.003	0.019	0.129	0.019
븝	Piacenza	0.244	0.037	-	0.003	0.018	0.143	0.020
-	Porto	0.136	0.027	4	0.001	0.012	0.108	0.005
	Sevilla	0.075	0.021	4	0.001	0.011	0.127	0.003
	Thiva	0.265	0.081	-	0.002	0.029	0.331	0.021

PEC (gw) From lysimeter / field studies

Parent	1 st year	2 nd year	3 rd year
Annual average (µg/L)	Not available for separate compounds		

Metabolite X	1 st year	2 nd year	3 rd year
Annual average	Not available for		

(µg/L)	separate	
	compounds	

Fate and behaviour in air (Annex IIA, point 7.2.2, Annex III, point 9.3)

Direct photolysis in air ‡	No data, not required
Quantum yield of direct phototransformation	No data, not required
Photochemical oxidative degradation in air ‡	DT_{50} 4.7 - 46 hours (Atkinson method, 1.5 x 10^{6} OH/cm ³ , 12-hour day)
Volatilisation ‡	from plant surfaces: negligible (measured) from soil: negligible (measured)
Metabolites	No data, not required

PEC (air)

Method of calculation

Expert judgement, based on vapour pressure, dimensionless Henry's Law Constant and information on volatilisation from plants and soil.

PEC (a)

Maximum concentration

Not calculated, expected to be negligible.

Residues requiring further assessment

Environmental occurring metabolite requiring further assessment by other disciplines (toxicology and ecotoxicology).

 Soil: Prosulfuron, CGA150829, CGA159902, CGA300406, CGA325025, SYN542604, CGA349707,

 Groundwater: Prosulfuron, CGA150829, CGA159902, CGA300406, CGA325025, SYN542604, CGA349707, M17 (pending identification), M18 ((SYN547308).

 Surface water: Prosulfuron, CGA150829, CGA159902, CGA300406, CGA325025, SYN542604, CGA325025, SYN542604, CGA325025, SYN542604, CGA349707

Sediment: Prosulfuron, CGA159902, CGA300406

Fate and behaviour in the environment

Air: Prosulfuron

Monitoring data, if available (Annex IIA, point 7.4)

Soil (indicate location and type of study)	Not available
Surface water (indicate location and type of study)	Not available
Ground water (indicate location and type of study)	Not available
Air (indicate location and type of study)	Not available

Points pertinent to the classification and proposed labelling with regard to fate and behaviour data

Candidate for R53.

Ecotoxicology

Effects on terrestrial vertebrates (Annex IIA, point 8.1, Annex IIIA, points 10.1 and 10.3)

Species	Test substance	Time scale	End point (mg/kg bw/day	End point (mg/kg feed)
Bird ‡			·	
Mallard duck	a.s.	Acute	LD ₅₀ = 1300 mg/kg bw	NOEL < 464 mg a.s./kg bw (lowest test concentration)
Mallard duck	a.s.	Acute	LD ₅₀ = 2105 mg/kg bw	NOEL = 215 mg a.s./kg bw (nominal concentration)
Bobwhite quail	a.s.	Acute	LD ₅₀ > 2150 mg/kg bw	NOEL < 1 470 mg a.s./kg bw (lowest test concentration)
Mallard duck	Preparation PEAK 75 WG	Acute	LD ₅₀ = 471 mg a.s./kg bw	LD ₅₀ = 625 mg PEAK 75 WG / kg bw (nominal concentration) NOEL = 195 mg PEAK 75 WG / kg bw (nominal concentration)
	Metabolite 1	<mark>Acute</mark>	-	-
Mallard duck	a.s.	Short-term	LD ₅₀ ≥ 1352 mg a.s./kg bw/d NOEL ≥ 1352 mg as/kg bw/d	$LC_{50} - 5 d > 5$ 000 mg a.s./kg diet (nominal concentration) NOEC - 5 d = 5 000 mg a.s./kg diet (nominal concentration)
Bobwhite quail	a.s.	Short-term	LD ₅₀ ≥ 735 mg a.s./kg bw/d NOEL ≥ 735 mg a.s./kg bw/d	$LC_{50} - 5 d > 5$ 000 mg a.s./kg diet (nominal concentration) NOEC - 5 d = 5 000 mg a.s./kg diet (nominal

Ecotoxicology

				concentration)
Mallard duck	a.s.	Long-term	NOEL = 2.95 mg a.s./kg bw/d*	NOEC - 22 wk = 28 mg a.s./kg diet (nominal concentration)
Bobwhite quail	a.s.	Long-term	NOEL = 35.95 mg a.s./kg bw/d	NOEC - 22 wk = 350 mg a.s./kg diet (nominal concentration)
Mammals ‡				
rat	a.s.	Acute	LD ₅₀ = 986 mg/kg bw	-
rat	Preparation PEAK 75 WG	Acute	LD ₅₀ >1000 (< 2000) mg/kg bw, i.e. > 755 mg a.s./kg bw.	LD ₅₀ >1000 (< 2000) mg/kg bw, i.e. > 755 mg a.s./kg bw.
	Metabolite 1	Acute	-	-
rat	a.s.	Short-term	90 d NOAEL = 3 mg/kg bw/day	-
rat	a.s.	Long-term	NOAEL = 12 mg/kg bw/day	-
rat	a.s.	Developmental toxicity	NOAEL Maternal = 200 mg/kg bw per day NOAEL Developmental = 50 mg/kg bw per day	
rabbit	a.s.	Developmental toxicity	NOAEL Maternal = 10 mg/kg bw per day NOAEL Developmental = 10 mg/kg bw per day	
Additional higher	r tier studies ‡			
¹ Endpoint related to both sexes				

Ecotoxicology

Toxicity/exposure ratios for terrestrial vertebrates (Annex IIIA, points 10.1 and 10.3)

Maize,	0.02	kg	a.s./ha
--------	------	----	---------

Indicator species/Category ²	Time scale	DDD (mg a.s./kg bw/day)	TER ¹	Annex VI Trigger ³		
Screening step (Birds)						
Small omnivorous bird	Acute a.s.	3.18	408.8	10		
Small omnivorous bird	Acute PEAK 75 WG	3.18	148.1	10		
-	Short-term	-	-	10		
Small Omnivorous bird	Long-term	0.687	4.29	5		
Tier 1 risk assessment	(Birds)	Γ	Γ			
-	Acute	-	-	10		
-	Short-term	-	-	10		
Medium granivorous bird"gamebird" Partridge	Long-term	0.0318	92.8	5		
Small insectivorous /worm feeding species "thrush" Robin	Long-term	0.0604	48.8	5		
Small omnivorous bird "lark" Woodlark	Long-term	0.116	25.4	5		
Medium herbivorous/granivorous bird "pigeon" Wood pigeon	Long-term	0.241	12.2	5		
Small insectivorous bird "wagtail" Yellow wagtail	Long-term	0.120	24.6	5		
Screening step (Mamma	als)					
Small herbivorous mammal	Acute a.s.	2.73	361.2	10		
Small herbivorous mammal	Acute PEAK 75 WG	2.73	> 276.6	10		
Small herbivorous mammal	Long-term	0.766	<mark>3.92</mark>	5		
Tier 1 risk assessment	Tier 1 risk assessment (Mammals)					
-	Acute	-	-	10		
Small insectivorous mammal "shrew"	Long-term	0.045	222.2	<mark>5</mark>		

Ecotoxicology

Small herbivorous	Long-term	<mark>0.766</mark>	<mark>13.1</mark>	<mark>5</mark>
Single diet for T1		<mark>0.035</mark>	<mark>285.7</mark>	5
(<i>Apodemus sylvaticus</i>)	Long-term			
Single diet for T1		<mark>0.070</mark>	<mark>142.9</mark>	<mark>5</mark>
Wood mouse (Apodemus sylvaticus)	Long-term			
Single diet for T1		<mark>0.512</mark>	<mark>19.5</mark>	5
Wood mouse (Apodemus sylvaticus)	Long-term			
Small omnivorous mammal "mouse"	Long-term	<mark>0.083</mark>	<mark>120.5</mark>	5
Higher tier refinement (Mammals)				
-	Acute	-	-	10
-	Long-term	-	-	5

¹ in higher tier refinement provide brief details of any refinements used (e.g., residues, PT, PD or AV)

² for cereals indicate if it is early or late crop stage

³ If the Annex VI Trigger value has been adjusted during the risk assessment of the active substance (e.g. many single species data), it should appear in this column

Toxicity data for aquatic species (most sensitive species of each group) (Annex IIA, point 8.2, Annex IIIA, point 10.2)

Group	Test substance	Time scale (Test type)	End point	Toxicity ¹ (mg/L)		
Laboratory tests ‡						
Fish						
Oncorhynchus mykiss *	a.s.	96 h-static	Mortality, LC50	> 100 (nom)		
Oncorhynchus mykiss	a.s.	96 h-flow- through	Mortality, LC50	> 160 (mm)		
Lepomis macrochirus	a.s.	96 h-static	Mortality, LC50	> 100 (nom)		
Lepomis macrochirus	a.s.	96 h-flow- through	Mortality, LC50	> 155 (mm)		
Cyprinus carpio	a.s.	96 h-static	Mortality, LC50	> 100 (nom)		
Cyprinodon	a.s.	96 h-flow-	Mortality, LC ₅₀	> 155 (mm)		
variegatus		through				
Ictalurus punctatus	a.s.	96 h-static	Mortality, LC ₅₀	> 100 (nom)		
Pimephales	a.s.	37 d-flow-	Growth, NOEC	150 (mm)		
promelas		through				
Oncorhynchus	a.s.	21 d-flow-	Growth, NOEC	5.80 (nom)		

Ecotoxicology

mykiss		through		
Oncorhynchus	PEAK 75 WG	96 h-static	Mortality, LC ₅₀	>100 f.p./L
mykiss			-	(>75.5 a.s./L)
				(nom)
Cyprinus carpio	PEAK 75 WG	96 h-static	Mortality, LC ₅₀	>100 f.p./L
			•	(>75.5 a.s./L)
				(nom)
Oncorhynchus	Metabolite	96 h-static	Mortality, LC ₅₀	63 (nom)
mvkiss	CGA 159902		,	· · · ·
Oncorhynchus	Metabolite	96 h-static	Mortality, LC ₅₀	> 100 (nom)
mvkiss	CGA 300406		, <u> </u>	
Oncorhynchus	Metabolite	96 h-static	Mortality I C50	> 200 (nom)
mykiss*	CGA 150829			
Oncorhynchus	Metabolite	96 h-flow-	Mortality I C.50	> 42 (mm)
mykiss	CGA 349707	through		> 42 (1111)
	00// 040/ 0/	linough		
Aquatic invertebrate	1	1	1	1
Daphnia magna	a.s.	48 h-flow-	Mortality, EC ₅₀	> 120 (mm)
		through		
Mysidopsis bahia	a.s.	96 h-flow-	Mortality, EC ₅₀	> 150 (mm)
		through		
Crassostrea	a.s.	96 h-flow-	Mortality, EC ₅₀	> 125 (mm)
virginica		through		
Daphnia magna	a.s.	21 d-semi-	Reproduction,	32 (nom)
		static	NOEC	
Daphnia magna	a.s.	21 d-flow-	Reproduction,	148 (mm)
		through	NOEC	
Daphnia magna	PEAK 75 WG	48 h-static	Mortality, EC ₅₀	>100 f.p./L
			-	(nom)
				(> 75.5 a.s./L)
Daphnia magna	Metabolite	48 h-static	Mortality, EC ₅₀	74 (nom)
	CGA 159902		•	
Daphnia magna	Metabolite	48 h-static	Mortality, EC ₅₀	> 100 (nom)
	CGA 300406			· · · · · ·
Daphnia magna	Metabolite	24 h-static	Mortality, EC ₅₀	> 100 (nom)
	CGA 150829		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	· · · · ·
Daphnia magna	Metabolite	48 h-static	Mortality, EC ₅₀	16 (nom)
, ,	CGA 150829		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	· · · /
Daphnia magna	Metabolite	48 h-static	Mortality, EC ₅₀	> 99 (mm)
	CGA 150829		, <u> </u>	
Daphnia magna	Metabolite	48 h-static	Mortality, EC ₅₀	> 100 (nom)
_ opinio	CGA 150829		,	
Daphnia magna	Metabolite	21 d-semi-	Reproduction	≥ 97 (mm)
Dapinia magna	CGA 150829	static	NOFC	- 07 (1111)
Daphnia magna	Metabolite	48 h-static	Mortality FC	> 100 (nom)
	CGA 349707			>28
				considering
				solubility

Ecotoxicology

Sediment dwelling organisms					
Indicate species	a.s.	28 d (static)	NOEC		
	Metabolite 2	28 d (static)	NOEC		
Algae					
Pseudokirchneriella subcapitata **	a.s.	120 h-static	Growth rate EC ₅₀ Growth rate	0.0106 (mm) 0.00278 (mm)	
Pseudokirchneriella subcapitata **	a.s.	72 h-static	Growthrate E_rC_{50} GrowthGrowthrateNOErCBiomassBiomass E_bC_{50} BiomassNOE_bC	0.074 (mm) 0.008 (mm) 0.016 (mm) 0.004 (mm)	
Anabaena flos- aquae	a.s.	120 h-static	Growth rate EC ₅₀	> 0.0272 (mm)	
Navicula pelliculosa	a.s.	120 h-static	Growth rate EC ₅₀ Growth rate NOEC	> 0.0836 (mm) 0.0836 (mm)	
Skeletonema costatum	a.s.	120 h-static	Growth rate EC ₅₀	> 0.0286 (mm)	
Anabaena flos- aquae	a.s.	72 h-static	$\begin{array}{l} \mbox{Yeld } E_y C_{50} \\ \mbox{Yeld } NOEC \\ \mbox{Growth} & rate \\ E_r C_{50} \\ \mbox{Growth} & rate \\ \mbox{NOEC} \end{array}$	0.530 (nom) 0.160 (nom) 1.160 (nom) 0.310 (nom)	
Scenedesmus subspicatus	PEAK 75 WG	72 h-static	Biomass: E _b C ₅₀ Biomass: NOE _b C	3.2 f.p./L (nom) (2.416 a.s./L) 1.100 f.p./L (nom) (0.8305 a.s./L)	
Scenedesmus subspicatus	Metabolite CGA 159902	72 h-static	Growth rate ErC50 Biomass:EbC50	238 (nom) 86 (nom)	
Pseudokirchneriella subcapitata	Metabolite CGA 300406	72 h-static	Growth rate: ECr50 Growth rate: NOErC	> 100 (nom) 100 (nom)	
Scenedesmus subspicatus	Metabolite CGA 150829	72 h-static	Biomass:EbC50	> 90 (nom)	
Pseudokırchneriella subcapitata	Metabolite CGA 150829	72 h-static	Growth rate: ErC ₅₀	> 100 (nom) > 100 (nom)	

Ecotoxicology

			Biomass: EbC50	
Pseudokirchneriella	Metabolite	72 h-static	Growth rate:	> 64.3 (mm)
subcapitata **	CGA 349707		ErC ₅₀	> 64.3 (mm)
			Biomass:EbC50	64.3 (mm)
			Biomass	64.3 (mm)
			NOE _b C Growth	
			rate: NOErC	
Higher plant				
Lemna gibba	a.s.	14 d-static	Fronds, EC50	0.00126
			Fronds, NOEC	(nom)
				0.000827
				(nom)
Lemna gibba	PEAK 75 WG	7 d –static	Yeld, E _y C ₅₀	0.0018
				f.p./L(nom)
				(0.00131
			Growth rate:	a.s./L)
			ErC ₅₀	
				0.0029 f.p./L
				(nom)
				(0.00212
		- - - - - - - - - -	<u> </u>	a.s./L)
Lemna gibba	Metabolite	7 d-static	Biomass: EbC50	> 100 (nom)
	CGA 150829		Growth rate:	> 100 (nom)
				100 (nom)
	Matabalita	7 d atatia		. 100 (n a m)
Lemna gibba		7 d-static	BIOMASS: EbC50	> 100 (nom)
	CGA 150829		Growth rate:	> 100 (nom)
				32 (nom)
Lomno gibbo	Matabalita	7 d statio		> 101 (mm)
Lemna gibba	SVNE42604	7 U-Static	$Dioinass. E_b C_{50}$	> 104 (mm)
	3111342004			> 104 (mm)
				104 (1111)
Lemna aibha	Metabolite	7 d-static		0.83 (mm)
		1 U-SIAIIC	Growth rate:	1.6 (mm)
				0.27 (mm)
				0.27 (1111)
iviicrocosm or mesoo	cosm tests			

Indicate if not required

¹ Indicate whether based on nominal (nom) or mean measured concentrations (mm). In the case of preparations indicate whether end points are presented as units of preparation or a.s.

* Formerly known as Salmo gairdneri

**Formerly known as *Selenastrum capricornutum*

Ecotoxicology

Toxicity/exposure ratios for the most sensitive aquatic organisms (Annex IIIA, point 10.2)

FOCUS Step 1

Maize and sweet corn (1x20 g a.s./ha)

Test substance	Organism	Toxicity end point (mg/L)	Time scale	PECi (µg/L)	PECtwa	TER	Annex VI Trigger ¹
a.s.	Oncorhynchus mykiss	> 160	Acute	6.73		23774.15	100
a.s.	Oncorhynchus mykiss	5.8	Chronic	6.73		861.81	10
a.s.	Daphnia magna	> 120	Acute	6.73		>17830.61	100
a.s.	Daphnia magna	32	Chronic	6.73		4754.83	10
a.s.	Pseudokirchneriella subcapitata *	0.016	Chronic	6.73		2.38	10
a.s.	Lemna gibba	0.00126	Chronic	6.73		0.187	10
a.s.	Sediment-dwelling ³ organisms		Chronic				10
CGA 159902	Oncorhynchus mykiss	63	Acute	1.77		35593.22	100
CGA 300406	Oncorhynchus mykiss	> 100	Acute	1.52		>65789.47	100
CGA 150829	Oncorhynchus mykiss **	> 200	Acute	0.83		>240963.86	100
CGA 349707	Oncorhynchus mykiss	> 42	Acute	1.17		>35897.44	100
CGA 159902	Daphnia magna	74	Acute	1.77		41807.91	100
CGA 300406	Daphnia magna	> 100	Acute	1.52		>65789.47	100
CGA 150829	Daphnia magna	> 16	Acute	0.83		>19277.11	100
CGA 150829	Daphnia magna	> 97	Chronic	0.83		>116867,47	10
CGA 349707	Daphnia magna	> 2.8	Acute	1.17		>2393.16	100
CGA 159902	Scenedesmus subspicatus	86	Chronic	1.77		48587,57	10
CGA 300406	Pseudokirchneriella subcapitata	> 100	Chronic	1.52		>65789,47	10
CGA 150829	Scenedesmus subspicatus	> 90	Chronic	0.83		>108433,73	10
CGA	Pseudokirchneriella	> 64.3	Chronic	1.17		>54957,26	10

Ecotoxicology

349707	subcapitata*					
CGA 150829	Lemna gibba	> 100	Chronic	0.83	>120481.93	10
SYN542604	Lemna gibba	> 104	Chronic	1.65	>63030.30	10
CGA325025	Lemna gibba	0.83	Chronic	1.09	761.47	10
PEAK 75 WG	Oncorhynchus mykiss	> 75.5	Acute	6.73	> 11218.42	100
PEAK 75 WG	Daphnia magna	> 75.5	Acute	6.73	>11218.42	100
PEAK 75 WG	Scenedesmus subspicatus	2.416	Chronic	6,73	358.99	10
PEAK 75 WG	Lemna gibba	0.00131	Chronic	6.73	0.19	10

¹ If the Annex VI Trigger value has been adjusted during the risk assessment of the active substance, it should appear in this column. E.g. if it is agreed during the risk assessment of mesocosm, that a trigger value of 5 is required, it should appear as a minimum requirement to MS in relation to product approval.

² only required for herbicides

³ consider the need for PEC_{sw} and PEC_{sed} and indicate which has been used

** Formerly known as Salmo gairdneri

FOCUS Step 2

Maize and sweet corn (1x20g a.s./ha)

Test substanc e	N/S ¹	Organism ²	Toxicity end point (mg/L)	Time scale	PECi	TER	Annex VI Trigger ⁴
a.s.	N	Pseudokirchneriella subcapitata*	0.016	Chronic	2.06	7.77	10
a.s.	S	Pseudokirchneriella subcapitata*	0.016	Chronic	1.12	14.28	10
a.s.	Ν	Lemna gibba	0.00131	Chronic	2.06	0.64	10
a.s.	S	Lemna gibba	0.00131	Chronic	1.12	1.17	10

¹ indicate whether Northern of Southern

 $^{\rm 2}\,$ include critical groups which fail at Step 1.

³ indicate whether maximum or twa values have been used.

⁴ If the Annex VI Trigger value has been adjusted during the risk assessment of the active substance, it should appear in this column. E.g. if it is agreed during the risk assessment of mesocosm, that a trigger value of 5 is required, it should appear as a minimum requirement to MS in relation to product approval.

⁵ only required for herbicides

 $^{\rm 6}\,$ consider the need for ${\sf PEC}_{\sf sw}$ and ${\sf PEC}_{\sf sed}$ and indicate which has been used

* Formerly known as Selenastrum capricornutum

Ecotoxicology

Refined aquatic risk assessment using higher tier FOCUS modelling

FOCUS Step 3

Maize and	sweet co	n (1x20 g	g a.	.s./ha)	

Test substanc e	Scenari o ¹	Water body type ²	Test organism ³	Time scale	Toxicit y end point (mg/L)	PECs wma x ⁴ (µg/L)	TER	Annex VI Trigger ⁵
	D3 Vredepe el	ditch				0.283	56.5 4	10
	D4 Skousbo	pond				0.528	30.3 0	
	D4 Skousbo	stream				0.283	56.5 4	
a.s.	D5 La Jaillière	pond	Pseudokirch neriella subcapitata*		0.016	0.251	63.7 4	
	D5 La Jaillière	stream				0.170	94.1 2	
	D6 Thiva	ditch				0.141	113. 47	
	R1 Weiherb ach	pond				0.008	2000	
	R1 Weiherb ach	stream				0.266	60.1 5	
	R2 Porto	stream				0.730	21.9 2	
	R3 Bologna	stream				0.903	17.7 2	
	R4 Roujan	stream				0.960	16.6 7	

¹ drainage (D1-D6) and run-off (R1-R4)

² ditch/stream/pond

³ include critical groups which fail at Step 2.

 $^4\,$ indicate whether $\mbox{PEC}_{\mbox{sw}},$ or $\mbox{PEC}_{\mbox{sed}}$ and whether maximum or twa values used

⁵ If the Annex VI Trigger value has been adjusted during the risk assessment of the active substance, it should appear in this column. E.g. if it is agreed during the risk assessment of mesocosm, that a Trigger value of 5 is required, it should appear as a minimum requirement to MS in relation to product approval.

*Formerly known as Selenastrum capricornutum

Maize and sweet corn (1×20 g a.s./ha)

Test substanc	Scenario ¹	Water body	<mark>Test</mark> organism ³	Toxicit y end point	PEC ₇ d-twa ⁴	TER	Annex VI Trigger⁵
------------------	-----------------------	---------------	--	---------------------------	--	-----	----------------------
Ecotoxicology

e		type ²		(mg/L)	<mark>μg/L</mark>		
	D3 Vredepee I	ditch			<mark>0.194</mark>	<mark>6.75</mark>	
	D4 Skousbo	pond			0.527	<mark>2.48</mark>	
	D4 Skousbo	stream			<mark>0.271</mark>	<mark>4.83</mark>	
	D5 La Jaillière	pond			<mark>0.250</mark>	<mark>5.24</mark>	
	D5 La Jaillière	stream			<mark>0.108</mark>	<mark>12.12</mark>	
PEAK 75	D6 Thiva	ditch	Lemna	1.31	<mark>0.064</mark>	<mark>20.47</mark>	10
WG	R1 Weiherba ch	pond	gioda		<mark>0.008</mark>	<mark>163.75</mark>	
	R1 Weiherba ch	stream			<mark>0.018</mark>	<mark>72.78</mark>	
	R2 Porto	stream			<mark>0.065</mark>	<mark>20.15</mark>	
	R3 Bologna	stream			<mark>0.084</mark>	<mark>15.59</mark>	
	R4 Roujan	stream			<mark>0.104</mark>	<mark>12.60</mark>	
	D3 Vredepee I	ditch	-		<mark>0.194</mark>	<mark>10.93</mark>	10
	D4 Skousbo	pond			<mark>0.527</mark>	<mark>4.02</mark>	
	D4 Skousbo	stream			<mark>0.271</mark>	<mark>7.82</mark>	
	D5 La Jaillière	pond			<mark>0.250</mark>	<mark>8.48</mark>	
PEAK 75	D5 La Jaillière	stream	<mark>Lemna</mark>	<mark>2 12⁶</mark>	<mark>0.108</mark>	<mark>19.63</mark>	
WG	D6 Thiva	ditch	<mark>gibba</mark>	2.12	<mark>0.064</mark>	<mark>33.12</mark>	
	R1 Weiherba ch	pond	-		<mark>0.008</mark>	<mark>265</mark>	
	R1 Weiherba ch	stream			<mark>0.018</mark>	<mark>117.78</mark>	
	R2 Porto	stream			<mark>0.065</mark>	<mark>32.61</mark>	
	R3 Bologna	stream			<mark>0.084</mark>	<mark>25.24</mark>	

Ecotoxicology

D5 e	i <mark>LaJaillièr</mark>	stream		<mark>0.108</mark>	<mark>19.6</mark> 3	
D6	<mark>S Thiva</mark>	ditch		<mark>0.064</mark>	<mark>33.1</mark> 2	
R1 We	eiherbach	pond		0.002	<mark>1060</mark>	
R1 We	eiherbach	stream		<mark>0.004</mark>	<mark>530</mark>	
R2	Porto	stream		0.015	<mark>141.</mark> 33	
R3	Bologna	stream		0.020	<mark>106</mark>	
R4	Roujan	stream		0.025	<mark>84.8</mark>	

- ¹ drainage (D1-D6) and run-off (R1-R4)
- ² ditch/stream/pond
- ³ include critical groups which fail at Step 2.
- ⁴ indicate whether PEC_{sw}, or PEC_{sed} and whether maximum or twa values used
- ⁵ If the Annex VI Trigger value has been adjusted during the risk assessment of the active substance, it should appear in this column. E.g. if it is agreed during the risk assessment of mesocosm, that a Trigger value of 5 is required, it should appear as a minimum requirement to MS in relation to product approval.

⁶ ErC50	used	as	alternative	endpoint	in	risk	assessment	as	agreed	in	the	Pesticides	Peer	review
meeting	115													

Bioconcentration Active substance logPo/w 0.21-1.5

Effects on honeybees (Annex IIA, point 8.3.1, Annex IIIA, point 10.4)

Test substance	Acute oral toxicity (LD ₅₀ μg/bee)	Acute contact toxicity (LD ₅₀ µg/bee)	
a.s. ‡	>100 µg a.s./bee	>100 µg a.s./bee	
	LD ₅₀ > 151.22 µg f.p./bee ¹	LD ₅₀ > 134.41 µg f.p./bee ¹	
Formulation A8714C	(LD ₅₀ >112.5 μg a.s./bee)	(LD ₅₀ >100 μg a.s./bee)	
Field or semi-field tests			
Not required			

¹ f.p. = formulated product

Ecotoxicology

Hazard quotients for honey bees (Annex IIIA, point 10.4)

Test substance	Route	Hazard quotient	Annex VI Trigger	
a.s.	Contact	< 0.20	50	
a.s.	Oral	< 0.20	50	
formulation PEAK 75 WG	Contact	< 0.20	50	
formulation PEAK 75 WG	Oral	< 0.18	50	

Maize and sweet corn (1 x 20.0 g as/ha)

Effects on other arthropod species (Annex IIA, point 8.3.2, Annex IIIA, point 10.5)

Laboratory tests with standard sensitive species

Species	Test Substance	End point	Effect (LR₅₀ g/ha¹)
Aphidius rhopalosiphi ‡	formulation PEAK 75 WG	Mortality	LR ₅₀ >55 g A8714C/ha (equivalent to >40.0 g a.s./ha)
Typhlodromus pyri‡	formulation PEAK 75 WG	Mortality	LR ₅₀ >20 g A8714C/ha (equivalent to >15 g a.s./ha)
Typhlodromus pyri ‡	formulation PEAK 75 WG	Mortality	LR ₅₀ >53.3 g A8714C/ha (equivalent to LR ₅₀ >38.93 g a.s./ha)

¹ for preparations indicate whether end point is expressed in units of a.s. or preparation

Maize and sweet corn (1 x 20.0 g as/ha)

Test substance	Species	Effect (LR ₅₀ g/ha)	HQ in-field	HQ off-field ¹ (1 m)	Trigge r
formulation PEAK 75 WG	Typhlodromus pyri	LR ₅₀ > 38.93 g A8714C/ha	0.51	-	2
formulation PEAK 75 WG	Aphidius rhopalosiphi	LR ₅₀ > 40.0 g A8714C/ha	< 0.50	-	2

¹ off-field risk assessment can be considered as not relevant considering that this risk is covered by infield risk assessment

Further laboratory and extended laboratory studies ‡

Species	Life stage	Test substance, substrate and duration	Dose (g/ha)	End point
---------	------------	--	-------------	-----------

Ecotoxicology

r				
Species	Life stage	Test substance, substrate and duration	Dose (g/ha)	End point
Coccinella septempunctata	Larvae	formulation PEAK 75 WG	0.02 kg and 0.0008 kg A8714 C/ha (equivalent to application rate of 15.3 g a.s./ha and 4% drift rate for field crops in a distance of 1 m, resp.)	LR ₅₀ > 0.02 kg A8714C/ha. (equivalent to >15.3 g a.s./ha)
Aleochara bilineata	Adults	formulation PEAK 75 WG	0.0206 kg A8714C/ha	$ER_{50} > 20.6$ g A8714C/ha (equivalent to > 15 g a.s./ha)
Poecilus cupreus	Adults	formulation PEAK 75 WG	0.0201 kg A8714C/ha	$LR_{50} > 20.1$ g A8714C/ha (equivalent to >15 g a.s/ha)
Chrysoperla carnea	Larvae	formulation PEAK 75 WG	20 to 30 g as/ha	M = 4% (larval mortality) at <mark>30</mark> g as/ha estimated
Coccinella septempunctata	Larvae	formulation PEAK 75 WG	20 to 30 g as/ha	M = 5% (larval mortality) at <mark>30</mark> g as/ha estimated
Orius albidipennis	Larvae	formulation PEAK 75 WG	20 to 30 g as/ha	M = 9% (larval mortality) at 30 g as/ha estimated

Field or semi-field tests	
Not required	

Effects on earthworms, other soil macro-organisms and soil micro-organisms (Annex IIA points 8.4 and 8.5. Annex IIIA, points, 10.6 and 10.7)

Test organism	Test substance	Time scale	End point ¹

Ecotoxicology

Test organism	Test substance	Time scale	End point ¹
Earthworms			
Eisenia fetida	Prosulfuron	Acute	LC ₅₀ >1000 mg a.s./kg d.w.soil
Eisenia fetida	PEAK 75 WG (A8714C)	Acute	14 d LC ₅₀ >1000 mg preparation/kg d.w.soil
		Sublethal (biomass)	NOEC = 100 mg preparation/kg d.w.soil
		Sublethal (reproduction)	NOEC = 0.73 mg a.s./kg d.w.soil NOEC = 1 mg f.p./kg d.w.soil
Eisenia fetida	CGA150829	Acute	LC ₅₀ > 1000 mg/kg d.w.soil
		Long-term	NOEC = 30 mg/kg soil
Eisenia fetida	CGA349707	Acute	LC ₅₀ > 1000 mg/kg d.w.soil
		Long-term	NOEC = 0.073 mg/kg soil
Eisopia fatida	CCA150002	Acute	$LC_{50} = 420 \text{ mg/kg d.w.soil}$
	CGA159902	Long-term	NOEC = 0.073 mg/kg soil
Eisenia fetida	SYN542604	Acute	LC ₅₀ > 100 mg/kg d.w.soil
		Long-term	NOEC = 0.073 mg/kg soil
Eisenia fetida	CGA325025	Acute	LC ₅₀ > 100 mg/kg d.w.soil
		Long-term	NOEC = 0.073 mg/kg soil
Eisenia fetida	CGA300406	Acute	LC ₅₀ > 1000 mg/kg d.w.soil
		Long-term	NOEC = 0.073 mg/kg soil
Other soil macro-org	ganisms		
Soil mite	a.s. ‡		
	Preparation		
	Metabolite 1		
Collembola and Hyp	oaspis		
Folsomia candida	CGA150829	28 day reproduction	NOEC = 0.225 mg /kg d.w.soil

Ecotoxicology

Test organism	Test substance	Time scale	End point ¹
	Test substance	Soil prodotory	
Hypoaspis (Geolaelaps) aculeifer	CGA150829	mite – 14 day mortality and reproduction	NOEC = 100 mg /kg d.w.soil
Soil micro-organism	IS		
	prosulfuron	NOEC	0.2 mg as/kg dry soil
	formulation PEAK 75 WG (A8714C)	Chronic 4 weeks, NOEC	0.18 mg A8714C/kg dw soil equivalent to 0.131 mg a.s./kg soil ¹
	Metabolite CGA150829	Chronic 6 weeks, NOEC	0.204 mg/kg dw soil
Nitrogen mineralisation	Metabolite CGA159902	Chronic 4 weeks, NOEC	0.135 mg/kg dw soil
	Metabolite CGA300406	Chronic 4 weeks, NOEC	0.135 mg/kg dw soil
	Metabolite CGA349707 ²	-	0.0131 mg/kg dw soil
	Metabolite SYN542604 ²	-	0.0131 mg/kg dw soil
	Metabolite CGA325025 ²	-	0.0131 mg/kg dw soil
	prosulfuron	NOEC	0.2 mg as/kg dry soil
	formulation PEAK 75 WG (A8714C)	Chronic 8 weeks, NOEC	0.18 mg A8714C/kg dw soil equivalent to 0.131 mg a.s./kg soil ¹
Carbon	Metabolite CGA150829	Chronic 4 weeks, NOEC	0.204 mg/kg dw soil
mineralisation	Metabolite CGA159902	Chronic 4 weeks, NOEC	0.135 mg/kg dw soil
	Metabolite CGA300406	Chronic 4 weeks, NOEC	0.135 mg/kg dw soil
	Metabolite CGA349707 ²	-	0.0131 mg/kg dw soil

Ecotoxicology

Test organism	Test substance	Time scale	End point ¹
	Metabolite SYN542604 ²	-	0.0131 mg/kg dw soil
	Metabolite CGA325025 ²	-	0.0131 mg/kg dw soil
Field studies			
Not required			

¹ Based on analysed purity of a.s. in study (73.0 % w/w)

² No soil micro-organisms studies have been conducted with metabolites CGA349707, CGA325025 and SYN524604. For the purposes of the risk assessment and as recommended in the Terrestrial guidance document they are conservatively assumed to be 10 times more toxic than prosulfuron.

Toxicity/exposure ratios for soil organisms

Test organism	Test substance	Time scale	PECs	TER	Trigger
Earthworms					
	PEAK 75 WG (A8714C)	Acute	0.027	> 37037	10
Eisenia letida		Chronic	0.027	37	5
Eisenia fetida	Prosulfuron	Acute	0.020	> 50000	10
Eisenia fatida	004450000	Acute	0.0124	> 80645	10
Eisenia leuda	CGA150629	Chronic	0.0124	2419	5
Finania fatida	CGA349707	Acute	0.0128	> 78125	10
Eisenia leuda		Chronic	0.0128	5.7	5
Finania fatida	CGA159902	Acute	0.0257	16342	10
Elsenia fetida		Chronic	0.0107	6.82	5
Eisenia fetida	CGA300406	Acute	0.0046	> 217391	10
		Chronic	0.0046	15.86	5
Eisenia fetida	CGA325025	Acute	0.0034	> 29412	10
		Chronic	0.0034	21	5
Finania fatida	SYN542604	Acute	0.0078	>12820	10
Elsenia fetida		Chronic	0.0078	9.35	5
Other soil macro-organisms					
Folsomia candida	CGA150829	28 day reproduction	0.0124	8065	5

Maize and sweet corn (1 x 20.0 g as/ha)

Draft Assessment Report

Evaluation of Active Substances

Plant Protection Products

Prepared according to **Retained Regulation (EC) 1107/2009** as it applies in Great Britain

3 U R V X O I X U R Q

Volume 3 ±B.8 (AS)

Environmental Fate Behaviour

GB Article 7 amendment application

Great Britain

September 2023

Version History

Mén	Mát	
September 2023	HSE Initial Assessment	

Ecotoxicology

Test Type	Test species	Ecotoxicological endpoint / lowest ER ₅₀
35 day study	Daucus carota	ER ₅₀ = 0.22 g A8714C/ha (equivalent to 0.168 g
	(Carrot)	as/ha) at early growth stage
	Lactuca sativa	ER ₅₀ = 1.32 g A8714C/ha (equivalent to 1.0 g
	(Lettuce)	as/ha) at middle growth stage
		ER50 = 18.7 g A8714C/ha (equivalent to 14.2 g
		as/ha) at late growth stage

Buffer distance of 20 m (PER of 0.03 g as/ha) was identified to get acceptable risk (TER = 5.6) for the most sensitive species, *Lactuca sativa*, at early growth stage.

Effects on biological methods for sewage treatment (Annex IIA 8.7)

Test type/organism	end point
Activated sludge	EC_{50} - 3 h > 110.5 mg as/l (nominal concentration)

Ecotoxicologically relevant compounds (consider parent and all relevant metabolites requiring further assessment from the fate section)

Compartment	
soil	Parent (state name), Metabolite 1 (state name)
water	Parent (state name)
sediment	Metabolite 2 (state name)
groundwater	Parent (state name)

Classification and proposed labelling with regard to ecotoxicological data (Annex IIA, point 10 and Annex IIIA, point 12.3)

RMS/peer review proposal

Ecotoxicology

Active substance N, R50/53 - Aquatic acute 1 / Aquatic chronic 1, H400, H 410 (P273-P391-P501) Prosulfuron Regulation (EC) No 1272/2008, amended by Commission Regulation 286/2011 Category: Aquatic Acute 1, H400; Aquatic Chronic 1, H410: Very Toxic to aquatic life with long lasting effects M-factor: 100 (acute); 100 (chronic) Pictogram Code: GHS09 Signal word: Warning The classification is based on the 14-d EC50 of 0.00126 mg a.s./L and 14-d NOEC of 0.000827 mg a.s./L for Lemna gibba. **RMS/peer review proposal**

Preparation

N, R50/53 - Aquatic acute 1 / Aquatic chronic 1, H 400 H410 (P273-P391-P501)

Used Compound Codes

Code/Trivia I name*	Chemical name/SMILES notation**	Structural formula**
CGA 159902 (prosulfuro n phenyl sulfonamid e)	2-(3,3,3- trifluoropropyl)benzenesulfonamide O=S(N)(=O)c1ccccc1CCC(F)(F)F	O S NH ₂ O F F F
CGA15082 9 (prosulfuro n triazine amine)	4-methoxy-6-methyl-1,3,5-triazin-2- amine Cc1nc(N)nc(OC)n1	$H_{3}C \xrightarrow{N} O$

Ecotoxicology

CGA30040 6 (O- desmethyl- prosulfuro n)	<i>N</i> -[(4-methyl-6-oxo-1,6-dihydro- 1,3,5-triazin-2-yl)carbamoyl]-2- (3,3,3- trifluoropropyl)benzenesulfonamide Cc2nc(NC(=O)NS(=O)(=O)c1cccc c1CCC(F)(F)F)nc(O)n2	F F F
CGA 325025 (demethox y amino- prosulfuro n)	<i>N</i> -[(4-amino-6-methyl-1,3,5-triazin- 2-yl)carbamoyl]-2-(3,3,3- trifluoropropyl)benzenesulfonamide O=C(Nc1nc(C)nc(N)n1)NS(=O)(= O)c2cccc2CCC(F)(F)F	F F F
CGA34970 7	<i>N</i> -(carbamimidoylcarbamoyl)-2- (3,3,3- trifluoropropyl)benzenesulfonamide O=S(=O)(NC(=O)NC(=N)N)c1cccc c1CCC(F)(F)F	F F F
SYN542604 (M5)	N-[(N- carbamoylcarbamimidoyl)carbamo yl]-2-(3,3,3- trifluoropropyl)benzenesulfonamide O=S(=O)(NC(=O)NC(=N)NC(N)=O)c1ccccc1CCC(F)(F)F	F F F
CGA32502 8 lysimeter metabolite M5	N- [(carbamoylcarbamoyl)carbamoyl]- 2-(3,3,3- trifluoropropyl)benzenesulfonamide O=S(=O)(NC(=O)NC(=O)NC(N)=O)c1ccccc1CCC(F)(F)F	F F F

Ecotoxicology

prosulfuro n polyimide (CGA32503 0)	<i>N</i> -{[({[2-(3,3,3- trifluoropropyl)phenyl]sulfonyl}carb amoyl)carbamoyl]carbamoyl}aceta mide O=S(=O)(NC(=O)NC(=O)NC(=O)N C(C)=O)c1ccccc1CCC(F)(F)F	F F F F F F F F F F F F F F F F F F F
G28533	6-methyl-1,3,5-triazine-2,4(1 <i>H</i> ,3 <i>H</i>)- dione Oc1nc(C)nc(O)n1	H ₃ C N OH N N OH
M17 (unidentifie d metabolite)	-	-
M18 (SYN54730 8)	4-methoxy-6-[({[2-(3,3,3- trifluoropropyl)phenyl]sulfonyl}carb amoyl)amino]-1,3,5-triazine-2- carboxylic acid	HO O NH NH N O CH ₃
(peer review accepted that proposed structure 1 is correct one)	COc2nc(nc(NC(=O)NS(=O)(=O)c1 ccccc1CCC(F)(F)F)n2)C(=O)O	F
* The metabo ** ACD/Cher 12.00 Produc	lite name in bold is the name used in nSketch, Advanced Chemistry Develo t version: 12.00 (Build 29305, 25 No	this document. opment, Inc., ACD/Labs Release: v 2008)