

MCL Report for: 2-[(2,4-dichlorophenyl)methyl]-4,4dimethyl-1,2-oxazolidin-3-one, Bixlozone (ISO)

Proposal for mandatory classification and labelling (MCL) based on Annex VI, Part 2 of the retained CLP Regulation (EU) No. 1272/2008 as amended for Great Britain

EC Number: 701-330-4 CAS Number: 81777-95-9 Month: November 2022

Contents

1.	Identity of the substance	3
1.1	Name and other identifiers of the substance	3
1.2	Composition of the substance	4
2.	Proposed mandatory classification and labelling	5
3.	History of the classification and labelling	8
4.	Justification that action is needed	9
5.	Identified uses	10
6.	Data sources	11
7.	Physicochemical properties	12
8.	Evaluation of physical hazards	16
8.1	Explosives	16
8.2	Flammable solids	17
8.3	Self-reactive substances	17
8.4	Pyrophoric solids	18
8.5	Self-heating substances	19
8.6	Substances which in contact with water emit flammable gases	19
8.7	Oxidising solids	20
8.8	Organic peroxides	20
8.9	Corrosive to metals	21
9.	Toxicokinetics (absorption, metabolism, distribution and elimination)	22
9.1	Short summary and overall relevance of the provided toxicokinetic information	31
10.	Evaluation of health hazards	34
10.1	Acute toxicity – oral route	34
10.2	2 Acute toxicity – dermal route	35
10.3	3 Acute toxicity – inhalation route	37

10.4	Specific target organ toxicity – single exposure (STOT SE)	39
10.5	Skin corrosion/irritation	43
10.6	Serious eye damage/eye irritation	47
10.7	Respiratory sensitisation	50
10.8	Skin sensitisation	50
10.9	Specific target organ toxicity – repeated exposure (STOT RE)	51
10.10	Germ cell mutagenicity	82
10.11	Carcinogenicity	89
10.12	Reproductive toxicity	106
10.13	Aspiration hazard	127
11.	Evaluation of environmental hazards	128
11.1	Rapid degradability of organic substances	128
11.2	Environmental transformation of metals or inorganic metals compounds	130
11.3	Environmental fate and other relevant information	131
11.4	Bioaccumulation	131
11.5	Acute aquatic hazard	133
11.6	Long-term aquatic hazard	147
11.7	Comparison with the GB CLP criteria	149
11.8	Conclusion on classification and labelling for environmental hazards	151
12.	Evaluation of additional hazards	152
12.1	Hazardous to the ozone layer	152
13.	Additional labelling	153
14.	References (non-confidential)	154
15.	Annexes	164
Annex	I – Summary of the aquatic toxicity of degradants of bixlozone	164

1. Identity of the substance

1.1 Name and other identifiers of the substance

Table 1: Substance identity and information related to molecular and structuralformula of the substance

Name(s) in the IUPAC nomenclature or other international chemical name(s)	2-[(2,4-dichlorophenyl)methyl]-4,4-dimethyl-1,2- oxazolidin-3-one
Other names (usual name, trade name, abbreviation)	Not applicable
ISO common name (if available and appropriate)	Bixlozone (provisional)
EC number (if available and appropriate)	701-330-4
EC name (if available and appropriate)	Not applicable
CAS number (if available)	81777-95-9
Other identity code (if available)	Not applicable
Molecular formula	C12H13Cl2NO2
Structural formula	
SMILES notation (if available)	Not available
Molecular weight or molecular weight range	274.14 g/mol
Information on optical activity and typical ratio of (stereo) isomers (if applicable and appropriate)	Not applicable
Description of the manufacturing process and identity of the source (for UVCB substances only)	Not applicable
Degree of purity (%) (if relevant for the entry in Annex VI)	Minimum 960 g/kg

1.2 Composition of the substance

Bixlozone has no stereoisomers. There are a number of confidential impurities present, however, none are considered toxicologically relevant at the levels present and are not relevant to the classification and labelling of the substance. There are no additives present in technical grade bixlozone.

Table 2: Constituents (non-confidential information)

Constituent (Name and numerical identifier)	Concentration range (% w/w minimum and maximum in multi- constituent substances)	Current MCL on GB MCL list (if applicable)
2-[(2,4- dichlorophenyl)methyl]- 4,4-dimethyl-1,2- oxazolidin-3-one	≥ 96%	Not listed

Table 3: Impurities (non-confidential information) if relevant for the classification of the substance

Impurity (Name and numerical identifier)	Concentration range (% w/w minimum and maximum)	Current MCL on GB MCL list (if applicable)	The impurity contributes to the classification and labelling?
No impurities of relevance to the classification and labelling.			

Table 4: Additives (non-confidential information) if relevant for the classification of the substance

Additive (Name and numerical identifier)	Function	Concentration range (% w/w minimum and maximum)	Current MCL on GB MCL list (if applicable)	The additive contributes to the classification and labelling?
No additives of relevance to the classification and labelling.				

2. Proposed mandatory classification and labelling

Table 5: Proposed mandatory classification and labelling according to the GB CLP criteria

		Index No Chemical name E		CAS No	Classification		Labelling			Specific	
			EC No		Hazard Class and Category Code(s)	Hazard statement Code(s)	Pictogram, Signal Word Code(s)	Hazard statement Code(s)	Suppl. Hazard statement Code(s)	Conc. Limits, M- factors and ATEs	Notes
Current GB MCL list entry	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Dossier submitters proposal	TBD	2-[(2,4- dichlorophenyl)methyl]- 4,4-dimethyl-1,2- oxazolidin-3-one, bixlozone	701-330-4	81777-95-9	Aquatic Acute 1 Aquatic Chronic 1	H400 H410	GHS09 Wng	H400 H410	N/A	M-factor = 1 M-factor = 10	N/A
Resulting entry on GB MCL list	TBD	2-[(2,4- dichlorophenyl)methyl]- 4,4-dimethyl-1,2- oxazolidin-3-one, bixlozone	701-330-4	81777-95-9	Aquatic Acute 1 Aquatic Chronic 1	H400 H410	GHS09 Wng	H400 H410	N/A	M-factor = 1 M-factor = 10	N/A

Table 6: Reason for not proposing mandatory classification and status under public consultation

Hazard class	Classification / reason for no classification	Within the scope of public consultation		
Explosives	Data conclusive but not sufficient for classification	Yes		
Flammable gases (including chemically unstable gases)	Hazard class not applicable	No		
Oxidising gases	Hazard class not applicable	No		
Gases under pressure	Hazard class not applicable	No		
Flammable liquids	Hazard class not applicable	No		
Flammable solids	Data conclusive but not sufficient for classification	Yes		
Self-reactive substances	Data conclusive but not sufficient for classification	Yes		
Pyrophoric liquids	Hazard class not applicable	No		
Pyrophoric solids	Data conclusive but not sufficient for classification	Yes		
Self-heating substances	Hazard class not applicable	No		
Substances which in contact with water emit flammable gases	Hazard class not applicable	No		
Oxidising liquids	Hazard class not applicable	No		
Oxidising solids	Data conclusive but not sufficient for classification	Yes		
Organic peroxides	Data conclusive but not sufficient for classification	No		
Corrosive to metals	Not classified, data lacking	Yes		
Acute toxicity via oral route	Data conclusive but not sufficient for classification	Yes		
Acute toxicity via dermal route	Data conclusive but not sufficient for classification	Yes		
Acute toxicity via inhalation route	Data conclusive but not sufficient for classification	Yes		
Skin corrosion/irritation	Data conclusive but not sufficient for classification	Yes		
Serious eye damage/eye irritation	Data conclusive but not sufficient for classification	Yes		
Respiratory sensitisation	Not classified, data lacking	Yes		
Skin sensitisation	Data conclusive but not sufficient for classification	Yes		
Germ cell mutagenicity	Data conclusive but not sufficient for classification	Yes		
Carcinogenicity	Data conclusive but not sufficient for classification	Yes		

Hazard class	Classification / reason for no classification	Within the scope of public consultation
Reproductive toxicity	Data conclusive but not sufficient for classification	Yes
Specific target organ toxicity-single exposure	Data conclusive but not sufficient for classification	Yes
Specific target organ toxicity-repeated exposure	Data conclusive but not sufficient for classification	Yes
Aspiration hazard	Not classified, data lacking.	Yes
Hazardous to the aquatic environment	Aquatic Acute 1; H400 Aquatic Chronic 1; H410	Yes
Hazardous to the ozone layer	Not classified, data lacking.	Yes

3. History of the classification and labelling

Bixlozone (2-(2,4-dichlorobenzyl)-4,4-dimethyl-1,2-oxazolidin-3-one, also known as F9600, CAS 81777-95-9) is a new pesticidal active substance in Great Britain (GB) under Regulation (EC) 1107/2009 as it has effect in Great Britain.

An application for the approval of bixlozone as a new active substance in the EU, with the evaluation being performed by the Netherlands as Rapporteur Member State (RMS) was concluded in 2015. The Netherlands have submitted a harmonised classification and labelling dossier (CLH) to the European Chemicals Agency (ECHA) which underwent public consultation in June 2022. The proposed classification was Aquatic Acute 1, H400, M factor 1 and Aquatic chronic 1, H410, M factor 10. At the time of preparing this MCL report, the Risk Assessment Committee had not yet considered the CLH proposal.

Bixlozone does not have an existing GB CLP mandatory classification/entry on the GB MCL list but is self-classified by 16 notifiers as aquatic acute 1, H400 and aquatic chronic 1, H410. The substance was not previously discussed by the Technical Committee for Classification and Labelling (TC C&L) under Directive 67/548/EEC.

4. Justification that action is needed

Bixlozone is a new pesticidal active substance in the meaning of Regulation EC 1107/2009 and, as such, shall normally be subject to mandatory classification and labelling process in accordance with Article 36 (2) and Article 37A of the retained CLP Regulation (EC) NO. 1272/2008 as amended for Great Britain (hereafter referred to as GB CLP). This report has been prepared by technical experts at HSE, acting in its capacity as the GB CLP Agency (hereinafter referred to as "the Agency").

5. Identified uses

Bixlozone is a herbicidal active substance intended to be used for pre- and early-post emergence application to a number of crops, including cereals, oilseed rape and maize, for control of a range of broadleaf and grass weeds.

6. Data sources

This MCL report relies exclusively on the data submitted in the context of the application for approval as an active substance under Regulation (EC) 1107/2009 as it applies in Great Britain.

Draft assessment report – DAR – Volume 3, Annex B.1; Identity of the Active Substance - 2022

Draft assessment report – DAR – Volume 3, Annex B.2; Physical & Chemical Properties – 2022

Draft assessment report – DAR – Volume 3, Annex B.4; Further Information - 2022

Draft assessment report – DAR – Volume 3, Annex B.5; Methods of Analysis - 2022

Draft assessment report – DAR – Volume 3, Annex B.6; Toxicology & Metabolism Data – 2022

Draft assessment report – DAR – Volume 3, Annex B.7; Residue Data – 2022

Draft assessment report – DAR – Volume 3, Annex B.8; Environmental Fate – 2022

Draft assessment report – DAR – Volume 3, Annex B.9; Ecotoxicology Data – 2022

Draft assessment report – DAR – Volume 4; Confidential information – 2022

At the time of preparation of this report, there was no REACH registration dossier for bixlozone (November 2022).

7. Physicochemical properties

Table 7: Summary of physicochemical properties

The physico-chemical properties of bixlozone pure (pure) and bixlozone technical (technical) are summarised below. Reference should be made to the Draft Assessment Report – DAR – Volume 3, Annex B.2; Physical and Chemical properties. All studies were conducted to appropriate quality standards and were considered acceptable during the peer review.

Property	Value	Reference	Comment (e.g., measured or estimated)
Physical state at 20°C and 101,3 kPa	Bixlozone pure: A crystalline, white solid with no discernible odour. Bixlozone technical: A pale yellow/brown crystalline solid with no discernible odour.	Cowlyn, N. 2017a Cowlyn, N. 2017b DAR: B.2.3	Visual assessment EPA/OPPTS 830.302 EPA/OPPTS 830.6303 EPA/OPPTS 830.6304 GLP Purity: 99.8 % (pure) 96.0 % (technical)
Melting/freezing point	Bixlozone pure: 81.5 °	Cowlyn, N. 2017a DAR: B.2.1	EC Method A1 OECD 102 GLP Melting block confirmation by differential scanning calorimetry (DSC) Purity: 99.8 % (pure)
Boiling point of bixlozone was not determinable; the test item decomposed before boiling.		Cowlyn, N. 2017a DAR: B.2.1	EC Method A2 OECD 103 GLP Siwoloboff method Purity: 99.8 % (pure)
Relative density	The relative density (D_4^{20}) of bixlozone was found to be 1.37.	Cowlyn,N. 2017i B.2.14	EC Method A.3 OECD 109 GLP Purity: 99.8 % (pure)

Property	Value				Reference	Comment (e.g., measured or estimated)	
	Parameter		Value		Cowlyn N. 2016a		
Vapour pressure	Vapour pres 20°C	ssure at	sure at 1.1 × 10 ⁻³ Pa		DAR: B.2.2	EC Method A.4 OECD 104 GLP	
	Vapour pressure a 25°C		2.3 × 10 ⁻	³ Pa		Vapour pressure balance Purity: 99.9 % (pure)	
	Bixlozone is o volatile.	considere	d slightly				
Surface tension	90% saturate 20°C: 66.5m considered su	v/m. Bixlo	ozone is n		Cowlyn, N. 2017a DAR: B.2.12	EC Method A.5 OECD 115 GLP Purity: 99.8 % (pure)	
	The water solubility of bixlozone was not significantly affected by pH. Bixlozone is moderately soluble.						
Water solubility	Media Mean Solubility (mg/L)				Cowlyn, N. 2016b	EC Method A.6 OECD Method 105 GLP	
	Purified wat	: er 42.0	± 0.3 mg	/L	DAR: B.2.5	Shake flask method Purity: 99.9 % (pure)	
	pH 4 buffer	42.3	± 2.2 mg	/L			
	pH 7 buffer		39.6 ± 1.6 mg/L				
	pH 9 buffer 41.9 ± 1.8 mg/L						
		s a Log Pow 3.3 g results were obtained at				EC Method A.8	
Partition coefficient n-octanol/water	Compound	Buffer solution	Pow	Log Pow	Cowlyn, N. 2016c DAR: B.2.7	OECD Method 107 GLP Shake flask method	
		pH 4	2100	3.3		Purity: 99.9 % (pure)	
	Bixlozone	pH 7	2160	3.3			
		pH 9	2060	3.3			
Flash point	Not applicable point is > 40°		zone mel	ting			

Property	Value	Reference	Comment (e.g., measured or estimated)	
Flammability	Bixlozone technical is not highly flammable. Bixlozone technical material melted and burned with a yellow sooty flame, which extinguished immediately after the removal of the burner flame. Combustion did not propagate along the train. As a negative result was obtained in the preliminary test, a definitive burning rate test was not required.	Cowlyn, N. 2017e DAR: B.2.9.1	EC Method A.10 GLP Purity: 96.0 % (technical)	
Explosive properties	 Bixlozone technical does not have explosive properties. No shock sensitivity No reaction observed in six tests using BAM drop hammer (mass 10 kg, drop height 40 cm). No friction sensitivity No reaction observed in six tests using BAM friction apparatus with a force of 360 N. No thermal sensitivity No reaction observed in the range135-285 °C in a 6 mm or 2 mm orifice. 	Cowlyn, N. 2017g DAR: B.2.11	EC Method A.14 GLP Purity: 96.0 % (technical)	
Self-ignition temperature	The auto-ignition temperature of bixlozone technical was 382°C. Bixlozone is a solid hence Method A.16 should be used. However, bixlozone was observed to melt at around 81 °C which resulted in material flowing out of the wire mesh cage, preventing measurement. Test A.15 was used as it employed a glass vessel. The use of test A.15 is considered acceptable.	Cowlyn, N. 2017f DAR: B.2.9.2	EC Method A.15 GLP Purity: 96.0 % (technical)	
Oxidising properties	Bixlozone technical has no oxidising properties. Mixtures of 2:1, 1:1 or 1:2 bixlozone /cellulose only burned slowly and did not burn to completion.	Cowlyn, N. 2017h DAR: B.2.13	EC Method A.17 GLP Purity: 96.0 % (technical)	

Property	Value	Reference	Comment (e.g., measured or estimated)
Stability in organic solvents and identity of relevant degradation products	No data		
Dissociation constant	Not applicable as bixlozone does not contain any groups that are ionisable within an environmentally relevant pH range. Water solubility and partition coefficient determinations at different pH's support this, as no pH dependence of these properties observed	Guo, J. 2018 DAR: B.2.8	Scientific justification
Viscosity	No data		

8. Evaluation of physical hazards

8.1 Explosives

Table 8: Summary of studies on explosive properties

Method	Results	Remarks	Reference
	 No shock sensitivity No reaction observed in six tests using BAM drop hammer (mass 10 kg, drop height 40 cm). 		
EC Method A14 GLP Test substance: Bixlozone technical Purity: 96.0 %	 No friction sensitivity No reaction observed in six tests using BAM friction apparatus with a force of 360 N. No thermal sensitivity 	Bixlozone has no explosive properties.	Cowlyn, N. 2017g DAR: B.2.11
	No reaction observed in the range 135-285 °C in a 6 mm or 2 mm orifice.		

8.1.1 Short summary and overall relevance of the information provided on explosive properties

Bixlozone was tested for explosive properties using EC Method A14 (Cowlyn, N. 2017g). The results showed no evidence of explosivity. Further, experience in handling and use indicates that it is not a pyrophoric solid and does not emit flammable gas on contact with water.

8.1.2 Comparison with the GB CLP criteria

Bixlozone has been adequately tested for explosivity but does not meet the criteria for classification under GB CLP.

8.1.3 Conclusion on classification and labelling for explosive properties

Not classified, data conclusive but not sufficient for classification.

8.2 Flammable solids

Table 9: Summary of studies on flammable solids

Method	Results	Remarks	Reference
EC Method A10 GLP Test substance: Bixlozone technical Purity: 96.0 %	Bixlozone technical melted and burned with a yellow sooty flame, which extinguished immediately after the removal of the burner flame. Combustion did not propagate along the train. As a negative result was obtained in the preliminary test, a definitive burning rate test was not required.	Bixlozone technical is not highly flammable.	Cowlyn, N. 2017e DAR: B.2.9.1

8.2.1 Short summary and overall relevance of the provided information on flammable solids

Bixlozone is a solid at room temperature but when tested for flammability using EC Method A10 it was shown to be not readily combustible and it did not contribute to fire through friction (Colwyn, N. 2017e). The results showed that bixlozone technical melted and burned with a yellow sooty flame which immediately extinguished after the removal of the burner flame. As a negative result was obtained in the preliminary test, a definitive burning rate test was not required.

8.2.2 Comparison with the GB CLP criteria

Bixlozone has undergone a screening test for flammability and does not meet the criteria for flammability under GB CLP.

8.2.3 Conclusion on classification and labelling for flammable solids

Not classified, data conclusive but not sufficient for classification.

8.3 Self-reactive substances

Method	Results	Remarks	Reference
EC Method A.14 GLP Substance tested: Bixlozone technical Purity: 96.0 %	No shock sensitivity No reaction observed in six tests using BAM drop hammer (mass 10 kg, drop height 40 cm).	Bixlozone technical does not have explosive properties.	Cowlyn, N. 2017g DAR: B.2.11

Table 10: Summary of studies on self-reactivity

Method	Results	Remarks	Reference
	No friction sensitivity		
	No reaction observed in		
	six tests using BAM		
	friction apparatus with a		
	force of 360 N.		
	No thermal sensitivity		
	No reaction observed		
	between 135-285 °C in a		
	6 mm or 2 mm orifice.		
EC Method A.17	Mixtures of 2:1, 1:1 or 1:2		Courter N
GLP	bixlozone /cellulose	Bixlozone technical has no	Cowlyn, N.
Substance tested:	burned slowly and did not	oxidising properties.	2017h
Bixlozone technical	burn to completion.		
Purity: 96.0 %			DAR: B.2.13

8.3.1 Short summary and overall relevance of the provided information on selfreactive substances

Bixlozone was tested for explosivity using EC Method A14 (Cowlyn N. 2017g). The results of this study showed there was no shock sensitivity, no friction sensitivity and no thermal sensitivity associated with bixlozone. Bixlozone has also been shown to have no oxidising properties in accordance with EC Method A17 (Cowlyn, N. 2017h). Bixlozone is not an organic peroxide and bears no chemical groups associated with explosive or self-reactive properties.

8.3.2 Comparison with the GB CLP criteria

Bixlozone is not a thermally unstable solid and is not liable to undergo exothermal decomposition in the presence or absence of oxygen. Bixlozone does not meet the criteria for a self-reactive substance.

8.3.3 Conclusion on classification and labelling for self-reactive substances

Not classified, data conclusive but not sufficient for classification.

8.4 Pyrophoric solids

8.4.1 Short summary and overall relevance of the provided information on pyrophoric solids

Experience in handling and use of bixlozone indicates that it is not pyrophoric. It does not ignite within five minutes of coming into contact with air.

8.4.2 Comparison with the GB CLP criteria

Bixlozone does not meet the criteria for a pyrophoric solid.

8.4.3 Conclusion on classification and labelling for pyrophoric solids

Not classified, data conclusive but not sufficient for classification.

8.5 Self-heating substances

Table 11: Summary of studies on self-heating substances

Method	Results	Remarks	Reference
EC Method A.15 GLP Test substance: bixlozone technical Purity: 96.0 %	The auto-ignition temperature of bixlozone technical was 382°C.	Bixlozone is a solid hence Method A.16 should be used. However, bixlozone was observed to melt at around 81 °C which resulted in material flowing out of the wire mesh cage, preventing measurement. Test A.15 was used as it employed a glass vessel. The use of test A.15 is considered acceptable.	Cowlyn, N. 2017f DAR: B.2.9.2

8.5.1 Short summary and overall relevance of the provided information on selfheating substances

Bixlozone was tested for auto-ignition using EC Method A15. The results of the study showed that the auto-ignition temperature of bixlozone technical was 382 °C. However, according to the Guidance on the Application of the CLP criteria (Version 5.0, July 2017) substances or mixtures with a low melting point (< 160 °C) should not be considered for classification in this class as the melting process is endothermic and the substance-air surface is drastically reduced.

8.5.2 Comparison with the GB CLP criteria

Bixlozone should not be considered for this class.

8.5.3 Conclusion on classification and labelling for self-heating substances

Not classified - conclusive but not sufficient for classification

8.6 Substances which in contact with water emit flammable gases

8.6.1 Short summary and overall relevance of the provided information on substances which in contact with water emit flammable gases

The classification procedure for this class does not apply as chemical structure of bixlozone does not contain metals or metalloids.

8.6.2 Comparison with the GB CLP criteria

Bixlozone should not be considered for this class.

8.6.3 Conclusion on classification and labelling for substances which in contact with water emit flammable gases

Not classified – conclusive but not sufficient for classification

8.7 Oxidising solids

Table 12: Summary of studies on oxidising solids

Method	Results	Remarks	Reference
EC Method A.17	Mixtures of 2:1, 1:1 or 1:2	Bixlozone	Cowlyn, N.
GLP	bixlozone /cellulose burned	technical has no	2017h
Substance tested: Bixlozone	slowly and did not burn to	oxidising	201711
technical	completion.	properties.	
Purity: 96.0 %			DAR: B.2.13

8.7.1 Short summary and overall relevance of the provided information on oxidising solids

Bixlozone was tested under EC Method A17 in order to determine whether it has any oxidising properties (Cowlyn, N. 2017h). The results showed that when burned as a mixture with cellulose (2:1, 1:1 or 1:2) it burned slowly and did not burn to completion. Therefore, bixlozone did not enhance the combustion of cellulose and was not shown to have any oxidising properties.

8.7.2 Comparison with the GB CLP criteria

As bixlozone did not cause or contribute to the combustion of cellulose, it does not meet the definition as an oxidising solid.

8.7.3 Conclusion on classification and labelling for oxidising solids

Not classified – conclusive but not sufficient for classification.

8.8 Organic peroxides

8.8.1 Short summary and overall relevance of the provided information on organic peroxides

Bixlozone does not contain the bivalent -O-O- structure and can therefore, not be considered an organic peroxide.

8.8.2 Comparison with the GB CLP criteria

Bixlozone does not meet the criteria for classification as an organic peroxide.

8.8.3 Conclusion on classification and labelling for organic peroxides

Not classified - conclusive but not sufficient for classification.

8.9 Corrosive to metals

8.15.1 Short summary and overall relevance of the provided information on the hazard class corrosive to metals

There is no testing data on bixlozone with regards to its corrosivity to metals. However, bixlozone does not have an extreme pH. Experience in handling and use also indicates it is not corrosive to metals. 8.15.2 Comparison with the GB CLP criteria

There is no evidence to suggest that bixlozone is corrosive to metals, however a corrosivity test with steel or aluminium has not been carried out.

8.15.3 Conclusion on classification and labelling for corrosive to metals

Not classified – data lacking.

9. Toxicokinetics (absorption, metabolism, distribution and elimination)

The ADME of bixlozone has been investigated in rats, via oral and iv dosing. Studies were conducted with both ¹⁴C-phenyl bixlozone and ¹⁴C-carbonyl bixlozone. Also available are two in vitro comparative metabolism studies using hepatocytes from humans, rats, dogs and mice exposed to both ¹⁴C-phenyl and ¹⁴C-carbonyl bixlozone. Together, these studies provide a thorough understanding of the ADME of bixlozone in experimental animals.

Reference should be made to the Draft Assessment Report – DAR- Volume 3, Annex B.6; Toxicology and Metabolism data – July 2022

Method	Results	Remarks	Reference
Toxicokinetics	Single oral low dose (5 mg/kg bw):	Acceptable	Anon,
			2016h
Rat (Crl: CD9(SD)	C _{max} of bixlozone in plasma: 174 and 293		
4/sex/group in all	ng/mL at (Tmax) 0.25 h in male and female rats, respectively (M / F)		DAR : B.6.1.1.2
groups except for			D.0.1.1.2
single oral high dose with 8/sex/group	T _{1/2} :1.4 h and 1.7 h in M / F		
	AUC _{0-inf} : 145 and 221 ng x h/mL in M /F		
GLP	Discussionality 70.9% and 96.9% (total		
OECD 417 (2010)	Bioavailability: 70 % and 86 % (total radioactivity) & 11 % and 18 % (bixlozone in		
	plasma) for M /F		
Deviations: None of			
significance	Single oral high dose (1000 mg/kg bw):		
Study no. FMC-	C _{max} of bixlozone in plasma: 9565 and 15060		
P3773	ng/mL at (Tmax) 3.5 h in M / F		
Bixlozone technical,	T _{1/2} : 11 h and 14 h in M / F		
PL14-0163			
Purity 99.8 %	AUC _{0-inf} : 10.5x10 ⁵ and 35.9x10 ⁵ ng.h/mL in M /F		
1 unity 55.0 70			
[¹⁴ C-Phenyl]-	Bioavailability: 58 % and 60 % (total		
bixlozone, Batch	radioactivity) & 39 % and 100 % (bixlozone in		
CFQ42017; purity	plasma) for M /F		
99.6 %			

Table 13: Summary of toxicokinetic studies

ry Anon,
2014j
DAR :
B.6.1.1.1
Ē

Method	Results	Remarks	Reference
Not to OECD	No bixlozone detected in urine and rat faeces		
Guideline			
	Extensive metabolism to various		
Deviations: N/A	isoxazolidinone ring-opened/modified		
Bapart no. EMC	analogues in both urine and faeces.		
Report no. FMC- R2838			
N2030			
bixlozone technical,			
batch G3773-17			
Purity: 99.25 %			
25 mg/kg bw			
Single oral (gavage)			
enigie eral (garage)			
Tissue distribution	At T_{max} (0.5 h for single and repeated low dose	Acceptable	Anon,
	group and 4 h for the single high dose group),		2017d
Rat (Crl :CD9(SD),	highest tissue levels in gastrointestinal (GI)		
males & females,	tract (~58 % of AD), carcass (up to 24 % of		DAR :
4/sex/group)	AD), liver (~5 % of AD) and blood (~1% of AD).		B.6.1.1.4
GLP	No indication of preferential partition into whole		
	blood cells.		
OECD 417 (2010)			
	No indication of selective accumulation of		
Deviations: None	bixlozone or its related metabolites in any of		
	the tissues upon high dose administration		
Study no. FMC-	compared to low dose.		
P4973			
[¹⁴ C-Phenyl]-	No indication of accumulation of bixlozone or		
bixlozone Batch	its related metabolites after multiple dosing compared to single dosing.		
77874-3-19; purity	compared to single dosing.		
100 %	No clear differences in the distribution of		
	bixlozone or its related metabolites between		
BIXLOZONE	males and females.		
technical, PL14-0163			
Purity 99 %			
i anty 00 /0			
Single oral low dose			
(5 mg/kg bw)			
Single oral high dose			
(500 mg/kg bw)			

Method	Results	Remarks	Reference
Multiple oral dose (5 mg/kg bw/day; 14 days)			
Radioactivity concentration in plasma and bone marrowRat (Crl: CD9(SD)4 malesGLPOECD 417 (2010)Deviations: NoneStudy no. FMC- P7354[¹⁴ C-Phenyl]- bixlozone Batch CFQ43224; purity	At T _{max} (4 h), total radioactivity concentration was 153.20 µg Eq/g ± 32.46 in plasma and 49.73 µg Eq/g ± 11.94 in bone marrow. The mean bone marrow to plasma ratio was 0.33. Results provide evidence for systemic exposure, in particular exposure of rat bone marrow, at doses used in the in vivo rat bone marrow micronucleus assay (Section B.6.4.2).	Acceptable	Anon, 2017h DAR: B.6.1.1.4
99.8 % Single oral low dose 500 mg/kg bw			
Excretion and Metabolism Rat (Crl :CD9(SD) 4 animals/sex/group GLP OECD 417 (2010) Deviations: None of significance Study no. FMC- P3887 [¹⁴ C-Phenyl]- bixlozone, batch	ExcretionM: > 90 % of the AD recovered in 7 daysMajor route of excretion: urine (62 – 74 % of the AD)Faeces: 21 – 34 % of the ADF: > 92 % of the AD recovered in 7 daysMajor route of excretion: urine (79 – 88 % of the AD)Faeces: 10 – 13 % of the ADExcretion through expired air was negligible in all dose groups in both sexes. AD recovery in tissues and carcass was minimal (day 7).	Acceptable	Anon, 2018d DAR: B.6.1.1.5

Method	Results	Remarks	Reference
Method 77874-3-19; purity 100 % BIXLOZONE technical, batch PL14-0163 Purity 99.8 % Single oral low dose (5 mg/kg bw) Single oral high dose (1000 mg/kg bw for M, 500 mg/kg bw for F) Multiple oral dose (5 mg/kg bw/day; 14 days)	ResultsEstimated oral absorption (sum of radioactivity in urine and tissues at the low dose of 5 mg/kg bw excluding faeces): 65 % in M and 88 % in F.MetabolismBixlozone was extensively metabolised; unchanged bixlozone detected at levels < 1 % of the AD in male rat urine after high dose administration only (1000 mg/kg bw). No major sex differences observed in metabolite profiles.Major metabolites identified (> 10 % of the AD in both sexes in urine after single dose at 5 mg/kg bw): 2,4-dichlorohippuric acid (12 % in M; 14.5 % in F) and 5-keto-hydrate-bixlozone (18 % in M, 24 % in F).Proposed main metabolic pathway in rats: hydroxylation leading to the formation 5-OH- bixlozone and its derivatives.Other routes of metabolism included a combination of oxidation, decarboxylation and deamination followed by conjugation of oxidative derivatives.	Kemarks	Reference
Metabolism (pilot study)Rat (Crl :CD9(SD)2 malesNot to GLPOECD 417 (2010)Deviations: N/AStudy no. FMC- R3694Bixlozone technical, batchPL14-0163Purity 99.8 %	 95 % of the dose was excreted in urine and faeces within 5 days with 72 % in urine and 24 % in faeces. Excretion through expired air was negligible. Bixlozone was extensively metabolised. Oxidation and ring-opening, followed by conjugation constituted the major metabolic reactions observed. 	Supplementary only	Anon, 2017c DAR: B.6.1.1.1

Method	Results	Remarks	Reference
[¹⁴ C-phenyl]-			
bixlozone, batch			
CFQ42017; purity			
99.6 %			
1000 mg/kg bw			
Single oral (gavage)			
Excretion and	Excretion	Acceptable	Anon,
Metabolism		Acceptable	2017e
Metabolisili	M: > 98 % of the AD recovered in 7 days.		20176
Rat (Crl :CD9(SD)			DAR:
	Major route of excretion: urine (62 % of the AD)		B.6.1.1.6
4 animals/sex/group			В.0.1.1.0
i al line of contigioup	Faeces: 34 % of the AD		
GLP			
	F: > 93 % of the AD recovered in 7 days		
OECD 417 (2010)			
	Major route of excretion: urine (76 % of the AD)		
Deviations: None of			
significance	Faeces: 16 % of the AD		
-			
Study no. FMC-	Excretion was rapid for both sexes (> 88 % of		
P4547	the AD recovered after 48 h). Excretion		
	through expired air was low for both sexes. AD		
[¹⁴ C-Carbonyl]-	recovery in tissues and carcass was minimal		
bixlozone, batch	(day 7).		
CFQ42476; purity			
99.9 %	<u>Metabolism</u>		
Bixlozone technical,	Bixlozone was extensively metabolised;		
batch PL G3773-17	unchanged bixlozone was not detected in		
	urine. No major sex differences observed in		
Purity 99.5 %	metabolite profiles.		
Circular analysis is a			
Single oral low dose	Major metabolites identified (> 10 % of the AD		
(5 mg/kg bw)	in both sexes in urine): carbamic acid (10 % in		
Single and high door	M; 18 % in F) and 5-keto-hydrate bixlozone (17		
Single oral high dose	% in M, 23 % in F).		
(1000 mg/kg bw for	Bronopod main motobolic nothway in rate, the		
M, 500 mg/kg bw for	Proposed main metabolic pathway in rats: the		
F)	dimethylisoxazolidin-3-one ring moiety of		
Multiple oral dose (5	bixlozone was the most susceptible site of		
•	metabolism in rats, with the phenyl ring		
mg/kg bw/day; 14	remaining relatively well conserved.		
days)	Combination of various metabolic reactions		
	(oxidation, ring-scission, decarboxylation) lead		
		1	

Method	Results	Remarks	Reference	
	to metabolites including oxidative ring-opened analogues and ring-cleaved analogues.			
	The phase I metabolites, produced by various metabolic pathways, are subsequently conjugated as glucuronides in the urine.			
Excretion and Metabolism (pilot	Excretion	Supplementary only	Anon, 2018c	
study)	M: 91 % of the AD recovered in 7 days.		DAR:	
Rat (Crl :CD9(SD)	Major route of excretion: urine (67 % of the AD)		B.6.1.1.6	
2 animals/sex/group	Faeces: 22 % of the AD			
Not to GLP	F: > 94 % of the AD recovered in 7 days			
OECD 417 (2010)	Major route of excretion: urine (74 % of the AD)			
Deviations: N/A	Faeces: 17 % of the AD			
Study no. FMC- R3449	Excretion was rapid. Excretion through expired air was low for both sexes. AD recovery in tissues and carcass was minimal (day 7).			
[¹⁴ C-Carbonyl]- bixlozone, batch CFQ42018; purity 99.9 %	<u>Metabolism</u> Bixlozone was extensively metabolised;			
Bixlozone technical, batch G3773:62 (PL14-0163)	unchanged bixlozone was not detected in urine. No major sex differences observed in metabolite profiles.			
Purity 99.5 %	Major metabolites identified (> 10 % of the AD in both sexes in urine): carbamic acid (16 % in M; 22 % in F) and 5-keto-hydrate bixlozone (26			
Single oral low dose (5 mg/kg bw)	% in M, 23 % in F).			
Mass balance – bile	Excretion	Supplementary	Anon,	
cannulated rats	M: > 90 % of the AD recovered in 5 days.	only	2017f	
Rat (Crl :CD9(SD)	Major route of excretion: urine (52 % of the AD)		DAR: B.6.1.2	
5 males	Faeces: 40 % of the AD		0.0.1.2	
Not to GLP –				
OECD 417 (2010)	Excretion was rapid for both sexes (> 88 % of the AD recovered after 48 h). Excretion through expired air was low for both sexes. AD			

Method	Results	Remarks	Reference
Deviations: None of significance	recovery in tissues and carcass was minimal (day 7).		
Study no. FMC- P5709	Metabolism		
[¹⁴ C-Phenyl]- bixlozone , batch 77874-3-19; purity 100 %	Bixlozone was extensively metabolised; unchanged bixlozone was not detected in urine. Around 1 % of the AD was excreted through faeces, therefore gastric secretion was not significant.		
Bixlozone technical, batch PL G3773-17	Predominant metabolite in bile: 5-OH- bixlozone-glucuronide (42 %)		
Purity 99.5 % IV low dose (3 mg/kg	Predominant metabolite in urine: 5-OH- bixlozone-glucuronide (20 %)		
bw)	Proposed main metabolic pathway in rats: combination of oxidation (hydroxylation), ring- opening, and glucuronidation of oxidative products.		
In vitro comparative interspecies metabolism (first study) hepatocytes pools	[¹⁴ C]-bixlozone (phenyl and carbonyl) virtually completely metabolised after incubation for 4 hours in rat and dog hepatocytes. Metabolisation about 56-69 % in mouse hepatocytes and 62-86 % in human hepatocytes.	Acceptable	Anon, 2017g DAR: B.6.1.3.1
(males, females)			
Mouse: 8 animals in male pool, 54 in female pool	Common metabolic reactions in all species: oxidation (hydroxylation) and conjugation (glucuronidation); the metabolic pathways drawn from the metabolism of bixlozone in hepatocytes are similar to those identified in		
Rat: 12 animals in male pool, 21 in	rats after oral administration of [¹⁴ C]-bixlozone.		
female pool Dog: 3 animals in male pool, 3 in female pool	No unique or label-specific metabolite was identified in human hepatocytes however a disproportionate production of 4-OH-Me- bixlozone was observed in human hepatocytes compared to the other species, especially the		
Human: 10 individuals in male pool, 10 in female pool	rat and dog where it was not detected. In the mouse, levels 5-8-times lower were measured. No significant sex differences or label specific		
Not to GLP however the scientific validity of such a qualitative study design is not	metabolites were observed in human samples.		

Method	Results	Remarks	Reference
compromised therefore this study is acceptable for regulatory purposes. Study no. FMC- R4547 [¹⁴ C-Phenyl]- bixlozone, batch 77874-3-19; purity 100 % [¹⁴ C-Carbonyl]- bixlozone, Batch CFQ42476; purity 99.9 % F9600 technical, batch PL G3773-17			
Purity 99.5 %			
20 µM			
In vitro comparative interspecies metabolism (second study) Mixed-sex mouse, rat, dog and human hepatocytes Mouse: 48 animals Rat: 36 animals Dog: 6 animals Human: 10 individuals	 [¹⁴C]-bixlozone (phenyl and carbonyl) virtually completely metabolised after incubation for 4 hours in dog hepatocytes. Metabolisation about 72-87 % of the AR in the rat, 86-92 % in mouse hepatocytes and 49-51 % in human hepatocytes. Common metabolic reactions in all species: oxidation (hydroxylation) and conjugation (glucuronidation); the metabolic pathways drawn from the metabolism of bixlozone in hepatocytes are similar to those identified in rats after oral administration of [¹⁴C]-bixlozone. No unique or label-specific metabolite was identified in human hepatocytes however a disproportionate production of 4-OH-Me- 	Acceptable	Anon, 2020 DAR: B.6.1.3.2
GLP	bixlozone was observed in human hepatocytes compared to the other species, especially the		
Study no. FMC- 53482	rat.		
[¹⁴ C-Phenyl]- bixlozone, batch			

Method	Results	Remarks	Reference
CFQ43508; purity			
99.3 %			
[¹⁴ C-Carbonyl]-			
bixlozone, batch			
CFQ43509; purity			
99.6 %; specific			
activity 56 mCi/mmol			
Bixlozone technical,			
batch PL14-0163			
Purity 99.8 %.			
20 µM			

9.1 Short summary and overall relevance of the provided toxicokinetic information

The absorption, distribution, metabolism and excretion of bixlozone in mammals have been extensively investigated in Sprague-Dawley (SD) rats following a single oral low dose (5 mg/kg bw), a single oral high dose (500 mg/kg bw and 1000 mg/kg bw), multiple oral low doses (5 mg/kg bw, 14 days) and a single low IV dose (3 mg/kg bw) of [¹⁴C-Phenyl]-bixlozone. Moreover, a mass balance and excretion study was conducted with [¹⁴C-Carbonyl]-bixlozone at a single low dose (5 mg/kg bw). In addition to the in vivo studies, two in vitro metabolism studies of bixlozone using cryopreserved hepatocytes of rats, mouse, dog and human were performed. Lastly, additional limited toxicokinetic data from repeated dose and carcinogenicity studies conducted in rats, mice and dogs are available.

Absorption

Oral absorption was rapid following low dose administration ($C_{max} < \frac{1}{2}$ hours) but slower after high dose (C_{max} 15-24 hours). The extent of absorption was \approx 60-70 % in male and \approx 80-90 % in female rats, and the bioavailability was higher in females (86 %) compared to males (70 %) following low oral dosing. Possible saturation of absorption was observed following high dose administration. No accumulation was observed in plasma following repeated dosing in both sexes.

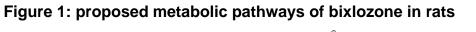
Distribution

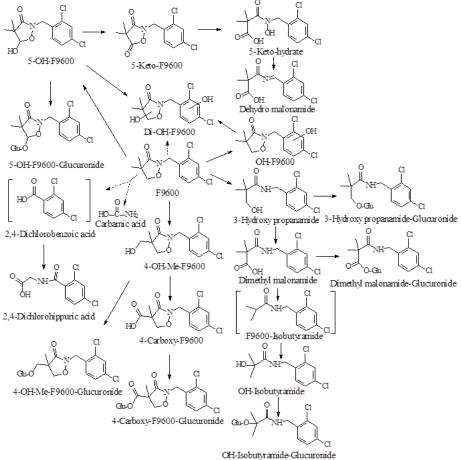
Following oral administration bixlozone and its metabolites were widely distributed in all rat tissues by the T_{max} , and the distribution was similar between sexes. Among all

tissues analysed, the GI tract accounted for about 60 % of the dose, followed by the carcass (up to 24 %), the liver (~5 %) and blood (~1 %). There was no indication of accumulation of radioactivity following repeated dosing.

Metabolism

In vivo, bixlozone was extensively metabolised in rats following single, high or multiple oral gavage doses, resulting in rapid and extensive excretion via urinary, bile and faecal routes; low levels, if any, of unchanged bixlozone were noted in the urine and faeces from all dose groups.


The major metabolites identified in urine in both sexes were carbamic acid (using [¹⁴C-Carbonyl]-bixlozone), 2,4-dichlorohippuric acid (using [¹⁴C-Phenyl]-bixlozone) and 5-keto-hydrate-bixlozone (glucuronide) (using [¹⁴C-Phenyl]-bixlozone or [¹⁴C-Carbonyl]-bixlozone). Based on the metabolites identified in urine and faeces, it is proposed that the dimethyl-isoxazolidin-3-one moiety of bixlozone is the most susceptible site for metabolism in rats. A combination of reactions including oxidation, reduction, decarboxylation, ring opening/cleavage, and deamination lead to extensive metabolism of bixlozone and the formation of a variety of metabolites. Several of the metabolites are subjected to conjugation with glucuronic acid for subsequent excretion in urine. The metabolites found in faeces were primarily unconjugated and could have been derived from hepatic and/or intestinal metabolism of bixlozone.


Comparative in vitro metabolism studies using rat, human, mouse and dog cryopreserved hepatocytes showed that bixlozone was extensively metabolised after 4 hours incubation in all hepatocytes species. No unique or label-specific metabolite was identified in human hepatocytes; however, a disproportionate production of 4-OH-Me-bixlozone was observed in human hepatocytes compared to the mouse (5-8-times higher), with none detected in the rat and dog. No significant sex differences or label specific metabolites were observed in human samples.

Elimination

Excretion after a low oral dose was rapid (83-97 % of the administered dose (AD) excreted within 48 hours via the urine and faeces), with a higher elimination rate in females. Although the initial rate of excretion was slightly slower in rats that received the high oral dose (69-72 % AD within 48 hours), the excretion pattern was similar between the low and high dose groups. No significant label specific differences in excretion patterns were evident. In non-bile cannulated rats, urinary excretion was relatively high (64-88 % AD with the phenyl label and 62-76 % AD with the carbonyl label), with faecal elimination accounting for 11-27 % and 16-34 % of AD for the phenyl and carbonyl label respectively. Elimination in expired air was very low with both labels.

The proposed metabolic pathways of bixlozone in rats are presented in Figure 1:

10. Evaluation of health hazards

10.1 Acute toxicity – oral route

There is one well-conducted study available to inform on the acute oral toxicity of bixlozone in rats. In addition, there is a dose range-finding acute neurotoxicity study (non-guideline and non-GLP) and a guideline neurotoxicity study conducted according to GLP available. Reference should be made to the Draft Assessment Report – DAR – Volume 3, Annex B.6; Toxicology and metabolism data.

Method,	Species,	Test	Dose levels,	Value	Effects	Reference
guideline,	strain, sex,	substance	duration of	LD ₅₀		
deviations if	no/group		exposure			
any						
Acute oral	Rats	Bixlozone	430 (1 female),	> 2000	430 and 1370	Anon, 2014d
toxicity study,		technical,	1370 (1 female)	mg/kg bw	<u>mg/kg bw</u>	
up-and-down	SD albino	batch	& 2000 mg/kg			DAR: B.6.2.1
procedure,		PL13-0203	bw (3 females)		No deaths and	
gavage	Females (5				no clinical signs	
	animals)	Purity: 98.5	Observation		of toxicity.	
OECD 425		%	period: 14 days			
(2008)					2000 mg/kg bw	
		Vehicle:				
GLP		0.5 %			No deaths.	
		aqueous				
Deviations:		solution of			Day 1 only:	
none		CMC in			hypoactivity,	
		5 %			irregular	
		Tween-80			respiration (3-5	
					hours) and \downarrow	
					defecation in	
					2/3.	

Table 14: Summary of animal studies on acute oral toxicity

10.1.1 Short summary and overall relevance of the provided information on acute oral toxicity

The acute oral toxicity of bixlozone has been investigated in five fasted female Sprague-Dawley rats in accordance with the up-and-down procedure (OECD TG 425). An initial animal was given a single gavage dose of 430 mg/kg bw. This animal survived and did not display any signs of toxicity. Therefore, a second animal was dosed with 1370 mg/kg bw of the test substance; the survival of this rat led to the dosing of a further three animals at the maximum recommended dose of 2000 mg/kg bw.

All three animals survived to the end of the 14-day observation period; the only signs of toxicity observed in 2 females were hypoactivity, reduced respiration (3-5 hours) and decreased defecation on the first day of treatment. These signs did not indicate a specific toxic effect and had fully reversed by day two; all 3 animals appeared active and healthy for the remainder of the 14-day observation period. All animals gained weight during the study and no gross abnormalities were noted upon necropsy.

The LD₅₀ of bixlozone was determined to be > 2000 mg/kg bw.

In an acute neurotoxicity study performed according to guidelines and GLP, SD rats (5/sex/dose) received a single dose of either 0, 500, 1000 or 2000 mg/kg bw via oral gavage and were then observed for 14 days. There were no deaths during the course of this study. Similarly, in a range-finding study that preceded the main neurotoxicity study, no deaths were observed following a single dose of 0, 500, 1000 and 2000 mg/kg bw. The results of these studies support the findings of the guideline acute oral toxicity study in rats.

10.1.2 Comparison with the GB CLP criteria

In accordance with the CLP criteria, substances should be classified for acute oral toxicity when the LD₅₀ (or ATE) has been reliably determined to be \leq 2000 mg/kg bw. The LD₅₀ of bixlozone was determined to be > 2000 mg/kg bw. Therefore, the substance does not meet the criteria for classification for acute oral toxicity (i.e., the ATE is not \leq 2000 mg/kg bw).

10.1.3 Conclusion on classification and labelling for acute oral toxicity

Not classified - conclusive but not sufficient for classification.

10.2 Acute toxicity – dermal route

There is one well conducted study available to inform on the acute dermal toxicity of bixlozone in rats. Reference should be made to the Draft Assessment Report – DAR – Volume 3, Annex B.6; Toxicology and metabolism data – July 2022.

Method, guideline, deviations if	Species, strain, sex,	Test substance	Dose levels, duration of exposure	Value LD ₅₀	Effects	Reference
any	no/group	Distances	0000		Denne el invitertien	Amon 2014a
Acute dermal toxicity study Guideline: OECD 402 (1998)	Rats, SD albino, 5/sex	Bixlozone technical, batch PL13- 0203 Purity: 98.5	2000 mg/kg Exposure period: 24 hours	> 2000 mg/kg bw	Dermal irritation (erythema) at dose site in 2 out of 5 males only on day 1 (fully reversible by	Anon, 2014e DAR: B.6.2.2
GLP		% Moistened	Observation period: 14 days		day 2).	
Deviations: Application site constituted less than 10 % surface area		with distilled water to a dry paste (70 % w/w)				

Table 15: Summary of animal studies on acute dermal toxicity

10.2.1 Short summary and overall relevance of the provided information on acute dermal toxicity

The acute toxicity of bixlozone *via* the dermal route was investigated in a study in the rat conducted in accordance with OECD TG 402 and in compliance with GLP. The shorn skin of 5/sex Sprague-Dawley rats was exposed to a 2000 mg/kg bw dose of bixlozone technical (batch PL13-0203; purity 98.5%) for 24 hours, with a 14-day observation period. The dose was formulated as a 70 % w/w paste with distilled water and applied to the skin with a semi-occlusive dressing (taped onto an area of approximately 3.5 cm x 2.5cm, which corresponds to approximatively 8%). The applicant reported that this was the maximum area that could be covered owing to the small quantity of test material applied. Since signs of dermal irritation were minimal in the study and bixlozone was not found to be acutely toxic via the oral route (LD₅₀ > 2000 mg/kg bw), the Agency considers that this deviation is not expected to have had a significant impact on the outcome of the present study.

There were no deaths or clinical signs of toxicity; all animals gained weight during the study and no gross abnormalities were noted upon necropsy. Dermal irritation (erythema) was noted at the dose site of 2 out of 5 males only on day one, which had fully reversed by day 2.

The LD₅₀ was determined to be > 2000 mg/kg bw.

10.2.2 Comparison with the GB CLP criteria

In accordance with the CLP criteria, substances should be classified for acute dermal toxicity where the LD₅₀ (or ATE) has been reliably determined to be \leq 2000 mg/kg bw. The LD₅₀ of bixlozone was determined to be > 2000 mg/kg bw. Therefore, the substance does not meet the criteria for classification for acute dermal toxicity.

10.2.3 Conclusion on classification and labelling for acute dermal toxicity

Not classified – conclusive but not sufficient for classification.

10.3 Acute toxicity – inhalation route

There is one well conducted study available to inform on the acute inhalation toxicity of bixlozone in rats. Reference should be made to the Draft Assessment Report – DAR – Volume 3, Annex B.6; Toxicology and metabolism data.

Method, guideline, deviations if any	Species, strain, sex, no/group	Test substance, form and particle size (MMAD)	Dose levels, duration of exposure	Value LC ₅₀	Effects	Reference
Acute inhalation toxicity study, nose-only Guideline: OECD 403 (2009) & U.S. EPA OPPTS 870.1300 (1998) GLP Deviations: Yes but not significant. An adequate method of analysis for the concentration tested is not available but	Rats, SD albino, males & females, 5/sex	Bixlozone technical aerosol, batch PL13- 0385 Purity: 99.2 % MMAD: 2.84 µm	2.11 mg/L (maximum attainable concentration) Exposure : 4 hr	> 2.11 mg/L	There were no deaths. Clinical signs: irregular respiration in all animals following exposure (fully recovered by day 3).	Anon, 2014f DAR: B.6.2.3

 Table 16: Summary of animal studies on acute inhalation toxicity

Method, guideline, deviations if any	Species, strain, sex, no/group	Test substance, form and particle size (MMAD)	Dose levels, duration of exposure	Value LC₅₀	Effects	Reference
the method was concluded fit for purpose.						

10.3.1 Short summary and overall relevance of the provided information on acute inhalation toxicity

The acute inhalation toxicity of bixlozone was investigated in rats in a study conducted in accordance with OECD and GLP. Groups of Sprague-Dawley rats (56/sex) were exposed to 2.11 mg/L bixlozone technical as an aerosolised dust (4h, nose only exposure, MMAD 2.84µm). The concentration tested in this study (2.11 mg/L) is lower than the maximum concentration of 5 mg/L recommended in the OECD Guideline 403. Thus, the concentration tested did not cover all of the four hazard categories set in Annex I: 3.1.2.1. of the guidance on the Application of the CLP criteria for this endpoint (i.e., up to 5 mg/L). However, the testing conditions achieved in this study conformed with the recommendations of the OECD Guideline 403 regarding the testing of aerosols. Paragraph 30 of the OECD guideline specifies that it can be technically challenging to generate limit concentrations for aerosols. It also states that when testing aerosols, the primary goal should be to achieve a respirable particle size (MMAD of 1-4 µm), which is possible with most test articles at a concentration of 2 mg/L, which is the case for this study. Lastly, paragraph 30 also highlights that aerosol testing at greater than 2 mg/L should only be attempted if a respirable particle size can be achieved. These recommendations are also detailed in Annex I Section 3.1.2.3.2 of the CLP guidance, in that for dusts and mists a particle size range of 1-4 μ m, corresponding to a maximum concentration of about 2 mg/l, would be tested in rats to achieve applicability of animal experiment conditions to human exposure. The Agency concluded that the study tested bixlozone technical at the maximum concentration for aerosols recommended by the OECD guideline and the CLP guidance. Therefore, the study is valid for the purpose of classification.

Following exposure, animals were observed for 14-days and examined for signs of toxicity and behavioural changes immediately following their removal from the chamber and at least once daily thereafter. There were no deaths reported; all rats exhibited irregular respiration following exposure which had fully recovered by day 3. Although there were minor individual body-weight losses observed at various weighting time-points, overall, by the end of the study, the animals had gained the expected amount of weight. The sporadic weight losses observed were therefore not of toxicological significance. The LC_{50} was > 2.11 mg/L.

10.3.2 Comparison with the GB CLP criteria

In accordance with the criteria on CLP, classification for acute inhalation toxicity is appropriate where the 4-hour LC₅₀ (ATE) is \leq 5 mg/L (dust/mist). No deaths were reported in the study up to the maximum achievable concentration of 2.11 mg/L. Overall, bixlozone does not meet the classification criteria for acute inhalation toxicity noting that the study tested the aerosolised substance up to the maximum attainable concentration of 2.11 mg/L.

10.3.3 Conclusion on classification and labelling for acute inhalation toxicity

Not classified – conclusive but not sufficient for classification.

10.4 Specific target organ toxicity – single exposure (STOT SE)

Information relating to the potential for bixlozone to cause specific target organ toxicity was available from the acute toxicity data presented in Sections Error! Reference source not found., Error! Reference source not found. & Error! Reference source not found.. In addition, an acute neurotoxicity study and it's dose-range finding study in the rat are available.

Table 17: Summary of animal studies on STOT SE

Method, guideline, deviations if any, species, strain, sex, no/group	Test substance, route of exposure, dose levels, duration of exposure	Results							Reference
Acute	Bixlozone technical,	There were no	deaths	s & no t	reatmer	nt-related	d clinical	findings	Anon,
neurotoxicity study, gavage	batch PL14-0049	or body weight	chang	es up to	ו 2000 ו	mg/kg bv	V.	-	2014c
Dete	Purity: 96 %	There were no				-			DAR:
Rats,	Vehicle: 0.5 % (w/v)	neuropatholog	y parar	neters (up to 20	00 mg/k	g bw.		B.6.7.1
Crl:CD(SD), males &	carboxymethylcellulose	Motor activity:	statisti	callv sid	inificant	lower to	tal and		
females,	in 5 % Tween® 80	ambulatory mo						from	
10/sex/group	Gavage administration	1000 mg/kg bv for ambulatory	v for to	tal moto	or activit		-		
Guideline: OECD 424	0, 500, 1000 & 2000	Cumulative to			-		-		
Deviations:	mg/kg bw	minutes) in fe	males	auring	the pre	e-test an	id at day	0	
none				Dose	(mg/kg	bw)			
			N = 1					HCD	
GLP: yes				0	500	1000	2000		
Study no. WIL-		Mean total							
105114		motor		2033	2261	2257	2491		
		count %	-						
Acceptable		difference							
		from		N/A	+11	+22	+22.5		
		control	Pre-						
		Mean	test						
		ambulatory		469	552	582	681*		
		motor count							
		%							
		difference		N/A	+18	. 24	. 45		
		from		IN/A	+10	+24	+45		
		control							
		Mean total		2699	2201	1884*	2076*	2026 [1070-	
		motor count		2099	2201	1004	2010	[1070- 2543]	
		%	Devi					1	
		difference from	Day 0	N/A	- 18.5	-30	-23		
		control Mean	-					444	
		ambulatory		736	508*	478*	503*	444 [206-	

		motor count % difference from control Significant at * p HCD: CRL:CD(S animals, 39 stud	D) RAT					599]	
Dose-range finding acute neurotoxicity study, Rats, CrI:CD(SD), males & females, 3/sex/group Not to guideline GLP: no Study no. WIL- 105113 Supplementary	Bixlozone technical, batch PL13-0385 Purity: 99.2 % Vehicle: 0.5 % (w/v) carboxymethylcellulose in 5% Tween® 80 Gavage administration 0, 500, 1000, 1500 & 2000 mg/kg bw	There were no Clinical findings group presente and abdominal mouth and dec group also had areas. There were no Since there wa to clinical findir determined from	s: one f ed yello areas, reased the sa other t s no cl ogs a ti	female w mate red ma l defeca me yell reatme ear dos me to p	rial aro aterial o ation. A ow mat nt relate e-relate eak effe	und the o in the for nother fe rerial aro ed clinica	urogenit elimbs, emale in und uro al finding nse with	al, ventral nose and a this genital gs.	Anon, 2014b DAR: B.6.7.1

10.4.1 Short summary and overall relevance of the provided information on specific target organ toxicity – single exposure

The acute toxicity of bixlozone has been investigated in vivo in rats via the oral (OECD 425), dermal (OECD 402) and inhalation (OECD 403) routes. Moreover, the neurotoxic potential of bixlozone has been investigated in rats in a guideline oral acute neurotoxicity study (preceded by a range-finding study).

Bixlozone was tested up to the limit dose of 2000 mg/kg via the oral and dermal routes. In these studies there were few clinical signs and no macroscopic abnormalities and no mortality. In the oral study the only signs of toxicity observed in 2 females on the first day of treatment at 2000 mg/kg bw were hypoactivity, irregular respiration (3-5 hours post dose) and decreased defaecation volume. These signs did not indicate a specific toxic effect and had fully reversed by day 2.

In the inhalation toxicity study, bixlozone was tested at 2.11 mg/L only, the maximum concentration that could be obtained. At this dose, no mortality occurred and the few clinical signs noted did not indicate a specific acute toxic effect and had fully reversed by

day 3. No gross abnormalities were noted for any of the animals when necropsied at the conclusion of the 14-day observation period

In a GLP acute neurotoxicity study (conducted according to test guidelines), a single oral gavage dose of bixlozone was administered to groups of Sprague Dawley rats 10/sex/dose after a pre-dosing observation period of 14 days (doses: 0, 500, 1000 or 2000mg/kg bw in 0.5 % (w/v) carboxymethylcellulose in 5 % Tween 80). Animals were observed for a period of 14 days following dose administration.

There were no treatment-related changes in FOB or neuropathology parameters. Regarding motor activity parameters, mean lower cumulative total and ambulatory motor activity counts were observed from 1000 mg/kg bw for total motor activity and from 500 mg/kg bw for ambulatory motor activity in females on day 0. The differences were statistically significant. However, there was no clear dose-response and the control values registered at day 0 (day of treatment) were much higher than those registered during the pre-test, with the values in the tested groups being similar to the values in the pretreatment controls. In addition, there were no shifts in the pattern of habituation in any dose group at any time-point. Lastly, in isolation, without any effects on any other motor activity and FOB parameters, the finding is unlikely to be related to treatment. Therefore the Agency concluded that the reduced motor activity (both total and ambulatory) observed in females on day 0 was not treatment-related.

Findings in acute toxicity studies included hypoactivity, reduced respiration (3-5 hours post administration) and decreased defecation. These were reported in 2 out of 3 animals in the acute oral (gavage) toxicity study on the first day of treatment at 2000 mg/kg bw but had fully reversed by day 2. These findings are considered to represent generalised toxicity at a very high dose rather than a specific neurotoxic response. No clinical signs indicative of neurotoxicity were found in the acute dermal toxicity study conducted in rats (Anon, 2014e). In the acute inhalation toxicity study (Anon, 2014f), irregular respiration following exposure was observed which had fully recovered by day 3. This finding is considered to be more specifically related to the route of exposure rather than the expression of a specific neurotoxic effect. Overall, there was no clear evidence of neurotoxicity in the acute toxicity studies; however, it should be noted that no specific neurobehavioural or neuropathology investigations are generally performed in these studies. No other relevant clinical findings potentially relating to neurotoxicity were noted in the long-term or reproductive toxicity studies conducted via the oral route in the rat. In mice, no clinical findings potentially related to neurotoxicity were found in any of the studies conducted with this species.

Overall, there was no evidence that bixlozone was neurotoxic after single administration or induced any effects that might be due to specific target organ toxicity.

10.4.2 Comparison with the GB CLP criteria

Specific target organ toxicity (single exposure) is defined as specific, non-lethal target organ toxicity arising from a single exposure to a substance or mixture. All significant health effects that can impair function, both reversible and irreversible, immediate and/or delayed and not specifically covered by the acute toxicity classifications should be included.

Classification in categories 1 and 2 is for substances causing non-lethal "significant and/or severe toxic effects", with the dose level at which the effect occurs covering the basis for the categorisation. Classification with STOT-SE 3 is reserved for substances/mixtures causing "transient effects" following a single exposure, specifically respiratory tract irritation (RTI) and narcotic effects. In the acute and repeated dose studies available there was no evidence of specific target organ toxicity relevant for classification in category 3.

Bixlozone is a new active substance thus there is limited human data to rely on. According to data maintained by FMC Corporation on more than 1200 workers involved in the research and development of bixlozone, there is no evidence that bixlozone causes significant toxicity in humans following a single exposure. In studies in rats, bixlozone did not cause specific organ toxicity following a single exposure by the oral, inhalation or dermal routes. There is also no evidence that bixlozone is neurotoxic after single administration up to the limit dose of 2000 mg/kg bw.

Based on the clinical and behavioural observations in the described animal studies (rat), there were no effects that are indicative of specific target toxicity following a single administration of bixlozone. The limited human data did not report clinical cases and poisoning. Therefore, bixlozone does not meet the classification criteria for specific target-organ toxicity Category 1, 2 or 3 following a single administration.

10.4.3 Conclusion on classification and labelling for STOT SE

Not classified – conclusive but not sufficient for classification.

10.5 Skin corrosion/irritation

The skin irritation potential of bixlozone was investigated in an in vitro skin irritation test using reconstructed human epidermis (OECD 439; bottom-up approach) and an in vivo study in rabbits (OECD 404).

Method, guideline, deviations if any	Species, strain, sex, no/group	Test substance	Dose levels, duration of exposure	-Observa -Mean so -Reversi	cores bility	s and t /anima	•		of ons	set	Referen	ce
Primary skin irritation study Guideline: OECD 404 (2002) GLP Deviations: none	Rabbits, New- Zealand albino, females, 3 animals	Bixlozone technical, batch PL13-0203 Purity: 98.5 % Vehicle: Distilled water	0.5g	animal: 0, 0.67 & 0, 0 & 0 (0.33 oede <u>ritatic</u>	res over 24, 48 & 72 hours for each 0.33 (erythema)					Anon, 2014g DAR: B.6.2.4.2	:
						Time Remo	After oval	Patc	h	Mean score		
						30- 60 min	24 hrs	48 hrs	72 hrs			
				3501	F	1/0	0/0	0/0	0/0	0/0		
				3502	F	1/0	1/0	1/0	0/0	0.67/0		
				3503	F	1/0	1/0	0/0	0/0	0.33/0		

Table 18: Summary of animal studies on skin corrosion/irritation

Table 19: Summary of other studies relevant for skin corrosion/irritation

Type of	Test	Observations	Reference
study/ data	substance		
In vitro skin	Bixlozone	Not irritating	Anon, 2018a
irritation test	technical		
(SIT)	batch PL14-	Mean viability of bixlozone Technical = 109 %.	DAR:
	0049		B.6.2.4.1
Epiderm™		Skin Irritation Prediction = Not a skin irritant.	
skin model	Purity: 95.9		
(RhE-based	%		
test			

Test substance		Referenc				
25 mg (powder)	Results of t	he in vitro s	kin irritation tes	<u>t</u>		
	Test item		Concentration	Viability		
	Bixlozone	Bixlozone Technical, powder	Neat 25 mg	109.1 ± 4.59	Non-Irritant	
	Positive Control	SDS	5 % w/v	2.59 ± 0.53	Irritant	
	Negative Control	CMF- DPBS	-	100.0 ± 3.45	Non-Irritant	
	substance 25 mg	substance Results of t 25 mg (powder) Test item Test item Bixlozone Bixlozone Positive Control Negative Negative	substance Results of the in vitro s 25 mg Results of the in vitro s (powder) Test item Bixlozone Bixlozone Positive SDS Control SDS Negative CMF-	substance Results of the in vitro skin irritation tes 25 mg Results of the in vitro skin irritation tes (powder) Test item Concentration Bixlozone Bixlozone Neat Positive SDS 5 % w/v Negative CMF- -	substance25 mg (powder)Results of the in vitro skin irritation testTest itemConcentrationTest itemConcentrationBixlozoneBixlozone Technical, powderBixlozoneBixlozone Technical, powderPositive ControlSDS5 % w/v2.59 ± 0.53NegativeCMF100.0 ±	substanceResults of the in vitro skin irritation test25 mg (powder)Results of the in vitro skin irritation testTest itemConcentrationMean Viability (%) ± SDSkin Irritation PredictionBixlozoneBixlozone Technical, powderNeat 25 mg109.1 ± 4.59 ±Non-Irritant

10.5.1 Short summary and overall relevance of the provided information on skin corrosion/irritation

In vivo skin irritation study

In an in vivo skin irritation study, conducted according to test guidelines and GLP, bixlozone technical (batch PL13-0203, purity 98.5 %) was applied to the clipped dorsal skin of three female rabbits. A moist paste (70 % w/w volume) was achieved by mixing 0.5 g of the test substance with distilled water, which was then applied under a semi-occlusive dressing for a 4-hour exposure period.

There was no oedema observed at any treated site during this study. Within one hour of patch removal, all three treated skin sites exhibited slight erythema. The mean scores for erythema for each rabbit were 0, 0.67 and 0.33 and the mean scores for oedema were 0 for each rabbit. All observations had fully reversed by 72 hours.

Under the conditions of this study, bixlozone was non-irritating to the skin.

In vitro skin irritation test (SIT)

In an in vitro skin irritation test, using the Epiderm[™] skin model, and conducted according to test guidelines and GLP, tissues samples moistened with 25 µL sterile Ca⁺⁺/Mg⁺⁺ Free Dulbecco's Phosphate Buffered Saline (CMF-DPBS) were treated with 25 mg of bixlozone technical (powder). The positive control, sodium dodecyl sulphate (SDS, 5 %) and

negative control, CMF-DPBS were tested concurrently and applied to tissues in triplicate; all tissues were incubated for 60 minutes. The tissues were subsequently rinsed, blotted, and transferred to fresh medium. After a 24-hour post-exposure incubation, tissues were supplied with fresh medium and incubated for further 18 hours for a total 42-hour post exposure period.

According to the OECD Guideline 439 criteria, a test article is predicted to be an irritant/corrosive (Category 1 or 2) when the mean relative viability of the three treated tissues is ≤ 50 % of the mean viability of the negative control. As the mean viability of bixlozone was 109 % it was predicted to be non-irritating to the skin. The positive control, SDS (viability at 2.6 %; SD < 18 %) and the negative control, CMF-DPBS (mean OD₅₇₀ at 1.922 equating to100 %; SD < 18 %) performed accordingly.

10.5.2 Comparison with the GB CLP criteria

Bixlozone was tested for its potential to cause skin corrosion/irritation both in vitro and in vivo.

In the in vitro study, bixlozone was not predicted to be a skin irritant. The RhE-based test method used for this study is able to distinguish between irritant and non-irritant chemicals when a bottom-up approach strategy is used, and can thus serve as stand-alone skin irritation method for non-corrosive substances (new guidance document on an Integrated Approach on Testing and Assessment (IATA) for skin corrosion and irritation (ENV/JM/MONO(2014)19)).

The results of the in vivo study also showed a lack of skin irritation when bixlozone was applied to the skin of New Zealand white rabbits. The mean scores for erythema and oedema were less than 2.3 in all animals, there was no inflammation or pronounced variation in the responses amongst the test animals and all findings were reversible within 72 h.

In addition, available data from the acute dermal toxicity study (Section **Error! Reference source not found.**) and the 21-day repeated dose toxicity study (Section **Error! Reference source not found.**) demonstrate that the substance is not expected to be corrosive.

Based on these data, bixlozone does not meet the criteria for classification as a skin irritant.

10.5.3 Conclusion on classification and labelling for skin corrosion/irritation

Not classified – conclusive but not sufficient for classification.

10.6 Serious eye damage/eye irritation

The eye irritation potential of bixlozone was investigated in a modern guideline in vivo study in rabbits and a modern guideline in vitro eye irritation test using the EpiOcular[™] eye model. Both studies were conducted according to GLP.

Method, guideline, deviations if any	Species, strain, sex, no/group	Test substance	Dose levels, duration of exposure	Results - Observations and time point of onset - Mean scores/animal - Reversibility	Reference
Primary eye irritation study	Rabbits, New Zealand albino, females, 3	Bixlozone technical, batch PL13-0203	0.1mL (0.08g)	Not irritating Mean scores at 24, 48 and 72 hours for each animal	Anon, 2014h DAR: B.6.2.5.2
Guideline: OECD 405 (2012) Deviations: none	animals	Purity: 98.5 %		Corneal opacity: 0,0,0 Iritis: 0,0,0 Conjunctival redness: 0,0,0 Conjunctival chemosis: 0,0,0	
GLP				,	

Table 20: Summary of animal studies on serious eye damage/eye irritation

Table 21: Summary of other studies relevant for serious eye damage/eye irritation

Type of study/data	Test substance	Observations				Reference	
In vitro eye irritation	Bixlozone technical		Prediction: irritating				
study Epiocular™ eye model ((RhE- based test	batch PL14-0049 Purity: 95.9 %	Eye Irritation	Mean viability of bixlozone Technical = 19.4 %. Eye Irritation Prediction = eye irritant/damaging. In vitro Eye Irritation results (6 hour exposure time)				
Guideline: OECD 492	25 mg (powder)	Test	items	Concentration	Mean Viability (%)	Ocular Irritation Prediction	
(2017)		Bixlozone	Bixlozone Technical	Neat	19.4	Irritant	

Type of study/data	Test substance		Reference				
Deviation: none		Positive Control	Methyl acetate	Neat	13.4	Irritant	
GLP		Negative Control	CMF- DPBS	-	100	Non-irritant	

10.6.1 Short summary and overall relevance of the provided information on serious eye damage/eye irritation

In vivo Study

Bixlozone technical (purity 98.5 %) was administered as a single instillation of 0.1 ml into the right eye of three New Zealand albino rabbits; the untreated left eye served as the negative control. Ocular irritation was evaluated using a high-intensity white light at 1, 24, 48 and 72 hours post instillation (with an additional fluorescein dye procedure at 24 hours to evaluate corneal damage).

There were no deaths or signs of toxicity and the animals gained the expected amount of weight by the end of the study period.

No corneal opacity or iritis was observed in any treated eye. Conjunctival redness and chemosis were noted in all treated eyes to some extent, but only at one hour post-installation (scores of 1 or 2). Mean scores for each animal for corneal opacity, iritis and conjunctival redness and chemosis over 24, 48 and 72 hours were 0, 0, 0 and 0.

In vitro study (Epiocular™ eye model (RhE-based test method))

Bixlozone is a solid and was tested as a powder in this study; the substance falls within the applicability domain of the test (paragraph 10 of the OECD Guideline 492). Tissue model inserts of stratified human keratinocytes were exposed to 50 mg of solid bixlozone technical for 6 hours in duplicate. The positive control methyl acetate and negative control CMF-DPBS were tested concurrently and applied to tissues in duplicate. Tissues were subsequently thoroughly rinsed, blotted, and transferred to fresh medium for 18 hours. Cell viability was assessed using the 3- [4,5 - dimethylthaizol-2-yl] - 2,5 - diphenyltetrazolium bromide (MTT) assay where the blue formazan salt formed in the test item-treated tissues was measured relative to the negative controls. Bixlozone was also tested to identify its potential in being a direct MTT reducer or for colour interference in contact with water or isopropanol. Bixlozone did not directly reduce MTT in absence of viable cells.

A test substance was predicted to have eye irritation/corrosion potential if the relative viability is \leq 60 %. As bixlozone was shown to have mean viability at 19.4 %, it is predicted

to be an eye irritant. Both the positive control methyl acetate (viability at 13.4%) and the negative control CMF-DPBS met the laboratory criteria for a valid assay.

10.6.2 Comparison with the GB CLP criteria

In a well conducted in vivo eye irritation study, the mean scores for each animal for corneal opacity, iritis and conjunctival redness and chemosis over 24, 48 and 72 hours were all 0. As the observed scores were all 0 and no other effects were noted in the eyes, bixlozone was not considered irritating to the eye in this study.

In recently performed guideline in vitro eye irritation study using the EpiOcularTM test system, bixlozone was predicted to be an eye irritant with a cell viability of 19.4 %. A relative viability of ≤ 60 % leads to a prediction of eye irritation (no category). The criteria for classification is:

Mean tissue viability	UN GHS
> 60 %	No category
≤ 60 %	No prediction can be made

This type of study allows for the identification of substances that do <u>not</u> meet the classification criteria for eye irritation or serious eye damage. If the mean percent tissue viability after exposure and post-exposure incubation is less than or equal to the established tissue viability cut-off value (i.e., a 'positive' result, as in the case of bixlozone), then further information is required for classification purposes. This is because the test is known to produce a high rate of false positives (37%). In the case of a true positive, the test cannot resolve between Categories 1 and 2.

Taking into consideration all the information available on the eye irritating potential of bixlozone, it is considered that the result in the in vitro study most likely represents a false positive and that bixlozone does not meet the criteria to be classified for serious eye damage/irritation.

10.6.3 Conclusion on classification and labelling for serious eye damage/eye irritation

Not classified – conclusive but not sufficient for classification.

10.7 Respiratory sensitisation

10.7.1 Short summary and overall relevance of the provided information on respiratory sensitisation

There are no relevant data. However, it is noted that the substance is not classified for skin sensitisation.

10.7.2 Comparison with the GB CLP criteria

Not applicable, there are no data.

10.7.3 Conclusion on classification and labelling for respiratory sensitisation

Not classified – data lacking.

10.8 Skin sensitisation

Bixlozone has been tested for its potential to cause skin sensitisation in a single modern Local Lymph Node Assay (LLNA) in mice. The study was performed according to test guidelines and GLP.

Method, guideline, deviations if any	Species, strain, sex, no/group	Test substance	Dose levels, duration of exposure	Resi	ults	Reference
Local	Mice,	Bixlozone	5 %, 10 %	Not sensitising		Anon,
lymph node		technical,	& 25 %	No dormal irritation	abaan ad far any	2014i
assay (LLNA)	females, 2/group	batch PL13- 0203	Positive	No dermal irritation of the vehicle control		DAR: B.6.2.6
(,	(preliminary		control:	any of the test grou	• •	
Guideline:	irritation),	Purity: 98.5 %	25% HCA			
OECD 429 (2010)	5/group (main test),	Vehicle:		<u>Results:</u>		
(2010)	5/group	acetone/olive			Stimulation	
Deviations:	(vehicle and	oil		(%)	index (SI)	
none	positive				1.40	
GLP	control)			5	1.13	
_				10	1.32	
				25	1.57	
				Positive & negative expected results.	controls gave the	

Table 22: Summary of animal studies on skin sensitisation

10.8.1 Short summary and overall relevance of the provided information on skin sensitisation

The skin sensitising potential of bixlozone was investigated in a GLP and OECD compliant mouse local lymph node assay (LLNA).

A preliminary study was conducted testing bixlozone at concentrations of 5 %, 10 %, and 25 % in order to determine the highest achievable level that avoided overt systemic toxicity and excessive local irritation. Solutions in excess of 25 % were considered to be too viscous for application. No irritation was noted at any of these doses. Based on a combination of knowledge of the test substance (toxicity, solubility, irritancy and viscosity) and the findings of this preliminary toxicity study, the main study used concentrations of 0, 5, 10 and 25%. The positive control was 25% alpha-hexylcinnamaldehyde (HCA) (97.9 % purity).

There was no dermal irritation observed for any of the vehicle control group sites or any of the test group sites. Very slight erythema (score of 1) was evident at one positive control site on day 2, all sites on day 3 and one site on day 6; very slight oedema (score of 1) was present at two dose sites on day 3 and desquamation was present at all dose sites on day 6.

The stimulation index (SI) was recorded as 1.13, 1.32 and 1.57 at 5 %, 10 % and 25 % bixlozone respectively. The positive control produced an SI value of 4.83 thus confirming the validity of the study. The negative control gave the expected result.

10.8.2 Comparison with the GB CLP criteria

In a guideline and GLP-compliant LLNA, bixlozone showed no evidence of skin sensitisation in mice when tested up to a maximum attainable concentration of 25 % w/v. In order for a substance to meet the criteria for classification as a skin sensitiser, an SI of \geq 3 is required. As the SI at all concentrations tested was \leq 1.57, the criteria for classification are not met.

10.8.3 Conclusion on classification and labelling for skin sensitisation

Not classified – conclusive but not sufficient for classification.

10.9 Specific target organ toxicity – repeated exposure (STOT RE)

The repeated dose oral toxicity of bixlozone has been investigated in a number of studies in rats, mice and dogs. In rats, there is a 28-day and a 90-day study. Further information is also available from a two generation reproduction toxicity dose-range finding study, a two generation reproduction toxicity main study and a 2-year carcinogenicity study. In mice,

there is a 28-day and a 90-day study and an 18-month carcinogenicity study. In dogs there is a 28-day dose range finding study, a 90-day study and a 12-month study. A 21-day dermal study in rats is also available.

Table 23: Summary of animal studies on STOT RE

Note:

↑↓ denote an increase or decrease in a parameter with respect to the control value Statistical significance: * $p \le 0.05$, ** $p \le 0.01$ abs. = absolute rel. = relative

Method, guideline, deviations if any, species, strain, sex, no/group	Test substance, route of exposure, dose levels, duration of exposure	Results	Reference
		Oral rat studies	
7-day Rat, CrI:CD(SD), males & females 5/sex/group Non-guideline Non-GLP	Bixlozone technical, batch PL13-0385 Purity : 99.2% Dietary route 0, 4000, 7000 and 12000 ppm Equivalent to : Males (M) : 0, 441, 698 and 1067 mg/kg bw/day Females (F): 0, 434, 763 and 1250 mg/kg bw/day	There were no deaths. The only sign of clinical toxicity was the presence of yellow material around the urogenital area of males from 7000 ppm. 12000 ppm (1067/1250 mg/kg bw/day M/F) ↓ mean food consumption (M): 28%** ↓ body weight gain (M): 45.5%** ↓ body weight gain (F): 45.5%** <i>Organ weights</i> ↑ absolute liver weights: 30%** (M) & 37%** (F) ↑ relative liver weights: 47%** (M) & 45%** (F) 7000 ppm (698/763 mg/kg bw/day M/F) ↓ mean food consumption (M): 16%** ↓ body weight gain (M): 24%** <i>Organ weights</i> ↑ absolute liver weights: 30%** (M) & 31%** (F) ↑ relative liver weights: 37%** (M) & 35%** (F) 4000 ppm (441/434) mg/kg bw/day (M/F) <i>Organ weights</i> ↑ absolute liver weights: 34.5%** (M) & 32%** (F) ↑ relative liver weights: 36%** (M) & 28.5%** (F)	Anon, 2015e DAR: B.6.3.1.1

28 day	Bixlozone technical, batch PL13-0385	There were no deaths or clinical signs of toxicity	Anon, 2015b
Rat, Crl :CD(SD), males & females	Purity: 99.2%	<u>10000 ppm (740 / 733 mg/kg bw/day M / F)</u>	DAR: B.6.3.2.1
5/sex/toxicology group (inc. control)	Dietary route	↓ body weight (F): 18 %**	D.0.3.2.1
9/sex/toxicokinetic	0, 750, 2500, 5000, and 10000 ppm (for	\downarrow body weight gain: 59 %** (F) & 14 % (M)	
group (3/sex/control group)	toxicology and toxicokinetic	↓ food consumption (F): 41 %** (days 0-7), 17 %** (days 7-14) and 22 %** (days 14-27)	
GLP	groups)	↓ food consumption (M): 20 % (days 0-7)**	
OECD 407 (2008)	Equivalent to :	Organ weights	
Deviations: None	Males (M): 0, 57, 182, 359 and 740 mg/kg bw/day	↑ absolute liver weights: 32 %** (F) & 56 %** (M)	
	Females (F): 0, 61, 193, 379 & 733 mg/kg bw/day	↑ relative liver weights: 61 %** (F) & 65.5 %** (M)	
		↑ relative kidney weights: 14** % (F & M)	
		Histopathology - liver	
		Hepatocellular hypertrophy: 5/5 mild (F) & 4/5 mild + 1/5 moderate (M)	
		Clinical chemistry	
		↑ total protein (9 % F &13 %** M), ↑ albumin (11 % M**), ↑ globulin (12 % M** & 15 %* F),↑ cholesterol (79 %** M & 91 %** F), ↑ BUN (45.5 %** F), ↑ triglyceride (86 %* F)	
		<u>5000 ppm (359 / 379 mg/kg bw/day M / F)</u>	
		↓ food consumption (F): 23.5 %** (days 0-7) & 17 %* (days 7-21)	
		\downarrow food consumption (M): 16 %* (days 0-7)	
		Organ weights	
		↑ absolute liver weight: 19 %* (F)	
		↑ relative liver weight: 29 %** (F) & 23 %** (M)	
		Histopathology - liver	

90-day (Includes neurotoxicity and 28- day recovery phase) Rat, Crl :CD9(SD), males & females 21/sex/group or 16/sex group (including neurotoxicity phase) GLP OECD 408 (1998) & OECD 424 (1997) Deviations: None	Bixlozone technical, batch PL14-0049 Purity: 96% Vehicle: acetone Dietary route 0, 500, 2000, and 8000 ppm (males) Equivalent to: 0, 29, 121 & 505 mg/kg bw/day (males) 0, 500, 2000, and 5000 ppm (females) Equivalent to: 0, 37, 150 & 351 mg/kg bw/day 90-days continuous dosing	Hepatocellular hypertrophy: 1/5 minimal & 4/5 mild (F); 3/5 minimal & 2/5 mild (M) <i>Clinical chemistry</i> ↑ cholesterol (43 %* F) 2500 ppm (182 / 193 mg/kg bw/day M / F) ↓ food consumption in females: 12 %** (days 0-7) & 11 %* (days 7-14) <i>Organ weights</i> ↑ relative liver weight: 17 %** (F), 15.5 %** (M) <i>Histopathology - liver</i> Hepatocellular hypertrophy: 4/5 minimal (F) & 3/5 minimal (M) 750 ppm (57 / 61 mg/kg bw/day M / F) No treatment-related findings. One male (5000 ppm) was found dead on day 87 (undetermined cause); there were no clinical signs of toxicity at any dose. 8000 / 5000 ppm M/F (505 / 351 mg/kg bw/day M / F) 1 death (M) ↓ body weight: 9 %* (M) & 9.5 %** (F) ↓ body weight gain: 18 %** (M) & 23 %** (F) food efficiency in M: -14 %** (main group) & + 22 % (recovery group) food efficiency in F: -11 %* (main group) & + 55 % (recovery group) <i>Organ weights</i> ↑ liver weights in M: 21.5 %** (absolute) & 37 %** (relative)	Anon, 2016a DAR: B.6.3.3.1
--	---	---	-------------------------------------

Recovery period: 28-days (5/sex group)	† liver weights in F: 22.5 %** (absolute) & 34 %** (relative) † kidney weights in F: 17 %** (relative) <i>Histopathology - liver</i> Hepatocellular hypertrophy: 10/10 M (1 minimal, 6 mild, 3 moderate) and in 10/10 F (7 mild, 3 moderate) Macrovascular vacuolation 5/10 M (4 minimal, 1 moderate) Macrovascular vacuolation 5/10 M (4 minimal, 1 moderate) Mild follicular cell hypertrophy: 3/10 (M) & 5/10 (F) <i>Histopathology - thyroid</i> Follicular cell hypertrophy (mild): 3/10 M & 5/10 F <i>Clinical chemistry</i> † Cholesterol 40.5 %** (F) & 77 %** (M) † globulin +11 %* and calcium +4.5 %* (F) 28-day recovery group (8000 / 5000 ppm) † food consumption 11 %** (M) & 4.5 % (F) † relative liver weight 10 % (M) † relative kidney weight 22 %** (M) Mild macro vascular vacuolation 1/5 (M) † cholesterol 31 %** (F) 2000 ppm (121 / 150 mg/kg bw/day M / F) <i>Organ weights</i> † liver weights in females: 16 %* absolute & 17 %** (relative) <i>Histopathology - liver</i>
--	---

		Hepatocellular hypertrophy 1/10 F (mild)	
		Clinical chemistry	
		↑ cholesterol +44 %**, globulin +11 % and calcium +4.5 %* (F)	
		<u>500 ppm (29 / 37 mg/kg bw/day M / F)</u>	
		No treatment-related findings.	
24-month	Bixlozone technical	Chronic phase – 12 months	Anon, 2017a
Rat (CrI:CD (SD) rats,	Batch PL14-0049	<u>5000/3000 ppm (217 / 167 mg/kg bw/day)</u>	DAR:
males and females)	Purity 96 %	\downarrow BW-gain in females (10%** days 1-344)	B.6.5.1
GLP	Dietary route	Organ weights	
OECD 453 (2009)	0, 250, 1000,	↑ liver weight in F (17 %* absolute & 34 %**	
Deviations: none	5000/3000 ppm	relative)	
	Equivalent to:	↑ liver weight in M (12 % absolute & 19 %** relative)	
	Males: 0, 10, 41, 217 mg/kg bw/day	1000 ppm & 250 ppm	
	Females: 0, 13, 53, 167 mg/kg bw/day	No treatment-related findings.	
		<u>Carcinogenicity phase – 24 months</u>	
		<u>5000/3000 ppm (217 / 167 mg/kg bw/day)</u>	
		Dermal atonia and thin body condition in females	
		↓ body weight: 11 % (M) & 19 % (F)	
		\downarrow body weight gain: 14 % (M) & 19 % (F)	
		Organ weights	
		↑ liver weight in M (20 %** absolute & 35 %** relative)	
		Histopathology - liver	
		Hepatocellular hypertrophy:	

		 7/10 at 52 weeks & 79 % incidence at 104 weeks (M) 10/10 at 52 weeks & 74 % incidence at 104 weeks (F) Hepatocellular vacuolation: 7/10 at 52 weeks & 32 % incidence at 104 weeks (M) 10/10 at 52 weeks & 74 % incidence at 104 weeks (F) <i>Clinical chemistry</i> ↑ Cholesterol 50.5 %** albumin +7 %* total protein +8 %* and calcium +4 %* (F) 1000 & 250 ppm 	
		No treatment-related findings.	
2-generation	Bixlozone technical,	Parents	Anon,
reproductive toxicity	batch PL14-0049	<u>3000 ppm (176 / 217 mg/kg bw/day M / F)</u>	2016b
Dose range finding	Purity: 96 %		DAR:
study		\downarrow body weight in F (-35 %, pre-mating)	B.6.6.1.1
Rats, Crl:CD(SD),	Vehicle: acetone	Organ weights	
males & females,	0, 300, 1000, 3000		
10/sex/group	ppm	↑ liver weight in males (+ 15 % absolute & +19 % relative)	
	(0, 150, 500, 1500		
	ppm during	\uparrow relative kidney weight in males (+11 %)	
	lactation)	<u>1000 ppm & 300 ppm</u>	
	Dietary route		
	Equivalent to:	No treatment-related findings.	
	Males: 0, 17, 56		
	and 176 mg/kg	<u>Offspring</u>	
	bw/day	<u>3000 ppm (217 mg/kg bw/day M / F)</u>	
	Females: 0, 20, 62 and 172 mg/kg	↓ body weights in F (-10%)	
	bw/day (pre- mating), 0, 22, 74	Organ weights	
	and 217 mg/kg bw/day (gestation) & 0, 23, 86 and 251	\uparrow relative liver weights (+29 % F & +23 % M)	

Image is a constructionImage is a constructionImage is a construction1000 ppm (74 mg/kg bw/day M / F)07gan weights1 relative liver weights in F (+15 %)1 absolute liver weights in F (+15 %)300 ppm (22 mg/kg bw/day M / F)No treatment-related findings.Two-generationreproductive toxicityBixtlozone technical, batch PL14-0049Purity: 96 %Vehicle: acetoneGLPDietary routeGuideline: OECD 416 (2001)0, 150, 750 & 3000 ppm (reduced to 0, 75, 375 & 1500 ppm (reduced to 0, 75, 375 & 1500 ppm (actation)Deviations: noneperiations: no		mg/kg bw/day	↑ absolute liver weights in F (+15 %)	
Organ weightsTwo-generation reproductive toxicityBixlozone technical, batch PL14-0049Parental (systemic) toxicity Egeneration There were no treatment related deaths or clinical signs of toxicityAnon, 2016cRats, CrI:CD(SD), males & females, 25/sex/groupDietary route2000 ppm (140 / 187 mg/kg bw/day M / F) there were no treatment related deaths or clinical signs of toxicityAnon, 2016cGuideline: OECD 416 (2001)0, 150, 750 & 3000 pm (reduced to 0, 75, 375 & 1500 pm during lactation)1 body-weights in F (-15 %** days 0-70) i mean body weights in F (-9 %** at gestation) Organ weightsDAR: B.6.1.2Guideline: OECD 416 (2001)0, 150, 750 & 3000 pm (reduced to 0, 75, 375 & 1500 pm during lactation)1 body-weight gains in F (-15 %** days 0-70) i mean body weights in F (-9 %** at gestation) Organ weightsB.6.1.2Deviations: noneEquivalent to (most conservative):1 absolute liver weights: +13 %** (M) & +21 %** (F)*12%*** (F) t relative liver weights: +13 %*** (M) & +21 %*** (F)Hales: 0, 7, 34 & 140 mg/kg bw/day1 relative liver weights: +13 %*** (M) & +21 %*** (F)*** (F) trelative liver weights: +13 %*** (M) & +10 %*** (F)Females: 0, 10, 49 \$w/day* mononuclear cell infiltration (chronic inflammation) in the prostate T50 (34 / 49 mg/kg bw/day M / F)150 (34 / 49 mg/kg bw/day M / F)		• • •		
Two-generation reproductive toxicityBix/ozone technical, batch PL14-0049Parental (system/c) toxicity Fegeneration There were no treatment related deaths or clinical signs of toxicityAnon, 2016cRats, CritCD(SD), males & females, 25/sex/groupDietary route3000 ppm (140 / 187 mg/kg bw/day M / F) tokicle: acetoneAnon, 2016cGuideline: OECD 416 (2001)0, 150, 750 & 3000 ppm (reduced to 0, 75, 375 & 1500 ppm during lactation)J body-weight gains in F (-15 %** days 0-70) I mean body weights in F (-9 %** at gestation) Organ weightsDAR: Bach12Equivalent to (most conservative):f absolute liver weights: +13 %** (M) & **12%** (F)1 relative liver weights: +13 %** (M) & **12%** (F)Males: 0, 7, 34 & Males: 0, 10, 49 & 187 mg/kg bw/dayf relative liver weights: +13 %** (M) & +10 %** (F)Histopathology - liver Hepatocellular hypertrophy in F Histopathology - liver Hepatocellular hypertrophy in F Histopathology - liver Hepatocellular hypertrophy in F Histopathology - liver			<u>1000 ppm (74 mg/kg bw/day M / F)</u>	
Two-generation reproductive toxicityBixlozone technical, batch PL14-0049Parental (systemic) toxicity E-generationAnon, 2016cRats, Crl:CD(SD), males & females, 25/sex/groupBixlozone technical, batch PL14-0049Parental (systemic) toxicity E-generationAnon, 2016cGLPDietary route3000 ppm (140 / 187 mg/kg bw/day M / F) i toxicityDietary route3000 ppm (140 / 187 mg/kg bw/day M / F) i toxicityDAR: B.6.1.2Guideline: OECD 416 (2001)0, 150, 750 & 3000 ppm (reduced to 0, 75, 375 & 1500 ppm during lactation)i body-weight gains in F (-15 %** days 0-70) i mean body weights in F (-9 %** at gestation) Organ weightsDAR: bw/eight gains in F (-15 %** (M) & +12 *** (M) & +12 %*** (M) & +12 %*** (F)Males: 0, 7, 34 & 140 mg/kg bw/day1 absolute liver weights: +13 %*** (M) & +21 %*** (F)*** (F) Histopathology - prostate 1 relative kidney weights: +13 %*** (M) & +10 %*** (F)Histopathology - prostate 1 mononuclear cell infiltration (chronic inflammation) in the prostate1 mononuclear cell infiltration (chronic inflammation) in the prostate			Organ weights	
300 ppm (22 mg/kg bw/day M / F) No treatment-related findings.Two-generation reproductive toxicityBixtozone technical, batch PL14-0049 <i>Parental (systemic) toxicity</i> <i>Fo generation</i> There were no treatment related deaths or clinical signs of toxicityAnon, 2016cRats, Crt:CD(SD), males & females, 25/sex/groupDietary route3000 ppm (140 / 187 mg/kg bw/day M / F) I body-weight gains in F (-15 %** days 0-70) pm (reduced to 0, 75, 375 & 1500 ppm during lactation)J body-weight gains in F (-15 %** days 0-70) I mean body weights in F (-9 %** at gestation) Organ weightsAnon, 2016cDeviations: none0, 150, 750 & 3000 ppm during lactation)J body-weight gains in F (-15 %** days 0-70) I mean body weights in F (-9 %** at gestation) Organ weightsI absolute liver weights: +13 %** (M) & +12%** (F)Males: 0, 7, 34 & 140 mg/kg bw/day1 relative liver weights: +13 %** (M) & +21 %** (F)%** (F) Histopathology - liver Hepatocellular hypertrophy in F Histopathology - prostate 1 mononuclear cell infiltration (chronic inflammation) in the prostate			↑ relative liver weights in F (+15 %)	
Two-generation reproductive toxicityBixlozone technical, batch PL14-0049Parental (systemic) toxicity 5 generationAnon, 2016cRats, Crl:CD(SD), males & females, 25/sex/groupPurity: 96 % Vehicle: acetoneThere were no treatment related deaths or clinical signs of toxicityDAR: B.6.6.1.2GLPDietary route3000 ppm (140 / 187 mg/kg bw/day M / F) tody-weight gains in F (-15 %** days 0-70) ppm (reduced to 0, 75, 375 & 1500 ppm (reduced to 0, 75, 375 & 1500 ppm during lactation)J body-weight gains in F (-15 %** days 0-70) t mean body weights in F (-9 %** at gestation) Organ weightsDeviations: none0, 150, 750 & 3000 ppm (reduced to 0, 75, 375 & 1500 ppm during lactation)1 absolute liver weights: +13 %** (M) & +12%** (F)Males: 0, 7, 34 & 140 mg/kg bw/day1 relative liver weights: +19 %** (M) & +21 %** (F)Males: 0, 10, 49 & 187 mg/kg bw/day1 relative kidney weights: +13 %** (M) & +10 %** (F)Histopathology - liver Hepatocellular hypertrophy in F Histopathology - prostate 1 mononuclear cell infiltration (chronic inflammation) in the prostate			↑ absolute liver weights in F (+15%)	
Two-generation reproductive toxicityBiolozone technical, batch PL14-0049Parental (systemic) toxicity For generationAnon, 2016cRats, Crt:CD(SD), males & females, 25/sex/groupPurity: 96 %There were no treatment related deaths or clinical signs of toxicityDAR: B.6.6.1.2GLPDietary route3000 ppm (140 / 187 mg/kg bw/day M / F)Jody weight gains in F (-15 %** days 0-70) µ mean body weights in F (-9 %** at gestation) ppm during lactation)Jody weights in F (-9 %** at gestation) Organ weights: +13 %** (M) & *12%** (F)Males: 0, 7, 34 & %** (F)Males: 0, 7, 34 & % 140 mg/kg bw/day† relative liver weights: +13 %** (M) & +21 %** (F)Histopathology - liver Histopathology - liverFemales: 0, 10, 49 % 187 mg/kg bw/day† relative kidney weights: +13 %** (M) & +10 %** (F)1/0 consult %** (F)Histopathology - liver Histopathology - prostate ↑ mononuclear cell infiltration (chronic inflammation) in the prostate1/0 solvay M / F) & 150 ppm (T/10 mg/kg bw/day M / F)			300 ppm (22 <u>mg/kg bw/day M / F</u>)	
reproductive toxicitybatch PL14-0049Fageneration2016cRats, Crl:CD(SD), males & females, 25/sex/groupPurity: 96 %There were no treatment related deaths or clinical signs of toxicityDAR: B.6.6.1.2GLPDietary route3000 ppm (140 / 187 mg/kg bw/day M / F)body-weight gains in F (-15 %** days 0-70) t body-weight gains in F (-15 %** days 0-70) t mean body weights in F (-9 %** at gestation)body-weight gains in F (-9 %** at gestation)Deviations: none0, 150, 750 & 3000 ppm (reduced to 0, 75, 375 & 1500 ppm during lactation)cman body weights in F (-9 %** at gestation)Equivalent to (most conservative):f absolute liver weights: +13 %** (M) & *12%** (F)*12%*** (F)Males: 0, 7, 34 & 140 mg/kg bw/dayf relative liver weights: +13 %** (M) & +21 %** (F)*12%*** (F)Hepatocellular hypertrophy in F Histopathology - liver Hepatocellular hypertrophy in F Histopathology - prostate f mononuclear cell infiltration (chronic inflammation) in the prostate*150 ppm (710 mg/kg bw/day M / F) & 150 ppm			No treatment-related findings.	
Rats, Crt:CD(SD), males & females, 25/sex/groupPurity: 96 % Vehicle: acetoneFor generation There were no treatment related deaths or clinical signs of toxicityDAR: B.6.6.1.2GLPDietary route3000 ppm (140 / 187 mg/kg bw/day M / F)ites acetoneDare B.6.6.1.2Guideline: OECD 416 (2001)0, 150, 750 & 3000 ppm (reduced to 0, 75, 375 & 1500 lactation)ites body-weight gains in F (-15 %** days 0-70) ites mean body weights in F (-9 %** at gestation) Organ weightsites body-weight gains in F (-9 %** at gestation) Organ weightsDeviations: noneEquivalent to (most conservative):ites body-weights: +13 %** (M) & *+12%** (F)Males: 0, 7, 34 & 140 mg/kg bw/dayitelative liver weights: +19 %** (M) & +21 %** (F)Females: 0, 10, 49 & 187 mg/kg bw/dayitelative kidney weights: +13 %** (M) & +10 %** (F)Histopathology - liver Hepatocellular hypertrophy in F Histopathology - prostate inflammation) in the prostate750 (34 / 49 mg/kg bw/day M / F)To monouclear cell infiltration (chronic inflammation) in the prostate	Two-generation	Bixlozone technical,	Parental (systemic) toxicity	Anon,
Rats, CrI:CD(SD), males & females, 25/sex/group Purity: 96 % There were no treatment related deaths or clinical signs of toxicity DAR: B.6.6.1.2 GLP Dietary route 3000 ppm (140 / 187 mg/kg bw/day M / F) ↓ body-weight gains in F (-15 %** days 0-70) ↓ mean body weights in F (-9 %** at gestation) ↓ mean body weights in F (-9 %** at gestation) Deviations: none Equivalent to (most conservative): ↑ absolute liver weights: +13 %** (M) & *+12%** (F) Males: 0, 7, 34 & & 140 mg/kg bw/day ↑ relative liver weights: +19 %** (M) & +21 %** (F) Females: 0, 10, 49 & 187 mg/kg bw/day ↑ relative kidney weights: +13 %** (M) & +10 %** (F) Histopathology - liver Hepatocellular hypertrophy in F Histopathology - prostate ↑ mononuclear cell infiltration (chronic inflammation) in the prostate	reproductive toxicity	batch PL14-0049	E concretion	2016c
males & females, 25/sex/groupVehicle: acetoneThere were no treatment related deaths or clinical signs of toxicityB.6.6.1.2GLPDietary route3000 ppm (140 / 187 mg/kg bw/day M / F)J body-weight gains in F (-15 %** days 0-70) ppm (reduced to 0, 75, 375 & 1500 ppm during lactation)J body-weight gains in F (-15 %** days 0-70) J mean body weights in F (-9 %** at gestation)Deviations: none0, 150, 750 & 3000 ppm during lactation)J body-weight gains in F (-9 %** at gestation) Organ weightsDeviations: none0, 150, 7, 34 & t 140 mg/kg bw/day1 absolute liver weights: +13 %** (M) & ** (F)Males: 0, 7, 34 & t 140 mg/kg bw/day1 relative liver weights: +13 %** (M) & +21 %** (F)Males: 0, 10, 49 & 187 mg/kg bw/day1 relative kidney weights: +13 %** (M) & +10 %** (F)Histopathology - liver Hepatocellular hypertrophy in F Histopathology - prostate (1 mononuclear cell infiltration (chronic inflammation) in the prostate750 (34 / 49 mg/kg bw/day M / F)150 ppm	Rats. Crl:CD(SD).	Purity: 96 %	<u>rogeneration</u>	DAR:
Guideline: OECD 416 (2001) 0, 150, 750 & 3000 ppm (reduced to 0, 75, 375 & 1500 ppm during lactation) ↓ body-weight gains in F (-15 %** days 0-70) ↓ mean body weights in F (-9 %** at gestation) Deviations: none ppm during lactation) ↓ body-weight gains in F (-15 %** days 0-70) ↓ mean body weights in F (-9 %** at gestation) Deviations: none ppm during lactation) ↓ body-weight gains in F (-15 %** days 0-70) Equivalent to (most conservative): ↑ absolute liver weights: +13 %** (M) & +12%** (F) Males: 0, 7, 34 & 140 mg/kg bw/day ↑ relative liver weights: +19 %** (M) & +21 %** (F) Females: 0, 10, 49 & 187 mg/kg bw/day ↑ relative kidney weights: +13 %** (M) & +10 %** (F) Histopathology - liver Hepatocellular hypertrophy in F Histopathology - prostate ↑ mononuclear cell infiltration (chronic inflammation) in the prostate 750 (34 / 49 mg/kg bw/day M / F) 150 ppm (7/10 mg/kg bw/day M / F)	males & females,			
(2001) ppm (reduced to 0, 75, 375 & 1500 ppm during lactation) ↓ mean body weights in F (-9 %** at gestation) Deviations: none ppm during lactation) <i>Organ weights</i> Equivalent to (most conservative): ↑ absolute liver weights: +13 %** (M) & +12 %** (F) Males: 0, 7, 34 & 140 mg/kg bw/day ↑ relative liver weights: +19 %** (M) & +21 %** (F) Females: 0, 10, 49 & 187 mg/kg bw/day ↑ relative kidney weights: +13 %** (M) & +10 %** (F) <i>Histopathology - liver</i> Hepatocellular hypertrophy in F <i>Histopathology - prostate</i> ↑ mononuclear cell infiltration (chronic inflammation) in the prostate <i>750 (34 / 49 mg/kg bw/day M / F)</i> 150 ppm	GLP	Dietary route	<u>3000 ppm (140 / 187 mg/kg bw/day M / F)</u>	
75, 375 & 1500 ↓ mean body weights in F (-9 %** at gestation) Deviations: none ppm during lactation) 0rgan weights Equivalent to (most conservative): ↑ absolute liver weights: +13 %** (M) & +12%** (F) Males: 0, 7, 34 & 140 mg/kg bw/day ↑ relative liver weights: +19 %** (M) & +21 %** (F) Females: 0, 10, 49 & 187 mg/kg bw/day ↑ relative kidney weights: +13 %** (M) & +10 %** (F) Histopathology - liver Hepatocellular hypertrophy in F Histopathology - prostate ↑ mononuclear cell infiltration (chronic inflammation) in the prostate 750 (34 / 49 mg/kg bw/day M / F) & 150 ppm (7 / 10 mg/kg bw/day M / F) 750 (34 / 49 mg/kg bw/day M / F)			\downarrow body-weight gains in F (-15 %** days 0-70)	
Iactation)Organ weightsEquivalent to (most conservative):		75, 375 & 1500	\downarrow mean body weights in F (-9 %** at gestation)	
Image: conservative): +12%** (F) Males: 0, 7, 34 & 140 mg/kg bw/day ↑ relative liver weights: +19 %** (M) & +21 Yereales: 0, 10, 49 ↑ relative kidney weights: +13 %** (M) & +10 & 187 mg/kg ↑ relative kidney weights: +13 %** (M) & +10 bw/day ↑ relative kidney weights: +13 %** (M) & +10 Histopathology - liver +12000000000000000000000000000000000000	Deviations. none	• •	Organ weights	
140 mg/kg bw/day %** (F) Females: 0, 10, 49 & 187 mg/kg bw/day ↑ relative kidney weights: +13 %** (M) & +10 %** (F) Histopathology - liver Hepatocellular hypertrophy in F Histopathology - prostate ↑ mononuclear cell infiltration (chronic inflammation) in the prostate 750 (34 / 49 mg/kg bw/day M / F) & 150 ppm (7 / 10 mg/kg bw/day M / F)		•		
& 187 mg/kg %** (F) bw/day Histopathology - liver Hepatocellular hypertrophy in F Histopathology - prostate ↑ mononuclear cell infiltration (chronic inflammation) in the prostate 750 (34 / 49 mg/kg bw/day M / F) & 150 ppm (7 / 10 mg/kg bw/day M / F)				
Histopathology - liver Hepatocellular hypertrophy in F Histopathology - prostate ↑ mononuclear cell infiltration (chronic inflammation) in the prostate 750 (34 / 49 mg/kg bw/day M / F) & 150 ppm (7 / 10 mg/kg bw/day M / F)		& 187 mg/kg		
Histopathology - prostate ↑ mononuclear cell infiltration (chronic inflammation) in the prostate <u>750 (34 / 49 mg/kg bw/day M / F) & 150 ppm</u> (7 / 10 mg/kg bw/day M / F)		bw/day	Histopathology - liver	
 ↑ mononuclear cell infiltration (chronic inflammation) in the prostate <u>750 (34 / 49 mg/kg bw/day M / F) & 150 ppm</u> (7 / 10 mg/kg bw/day M / F) 			Hepatocellular hypertrophy in F	
inflammation) in the prostate 750 (34 / 49 mg/kg bw/day M / F) & 150 ppm (7 / 10 mg/kg bw/day M / F)			Histopathology - prostate	
<u>(7 / 10 mg/kg bw/day M / F)</u>				
No treatment-related findings.				
			No treatment-related findings.	

F1 generation
<u>3000 ppm (140 / 187 mg/kg bw/day M / F)</u>
↓ body-weight 11.3 % * M & 6.3 %* F
\downarrow body weights gains 11.6 % * M (NA for F)
\downarrow mean body weights in F (-7 % ^{**} at gestation)
Organ weights
↑ absolute liver weights in F (+13 %**)
↑ relative liver weights: +14 %** (M) & +21 %** (F)
↑ relative kidney weights: +13 %** (M) & +10 %* (F)
Histopathology - liver
Hepatocellular hypertrophy in F
Histopathology - prostate
↑ mononuclear cell infiltration (chronic inflammation) in the prostate
750 (34 / 49 mg/kg bw/day M / F) & 150 ppm (7 / 10 mg/kg bw/day M / F)
No treatment-related findings.
Reproductive toxicity
No specific treatment-related adverse effects.
Offspring toxicity
<u>3000 ppm (187 mg/kg bw/day)</u>
F1 pups
↑ relative liver weights: +18 %* (M)
F2 pups

		↓ pup body weight-gain (PND 4-7 & 7-14)	
		↓ pup body weights (PND 14)	
		750 ppm (49 mg/kg bw/day) & 150 ppm (10 mg/kg bw/day)	
		No treatment-related findings.	
	0	ral mouse studies	
7-day Mouse, Crl:CD-1, males and females, 5/sex/group	Bixlozone Technical, batch PL13-0385 Purity: 99.2%	There were no treatment-related deaths or clinical signs of toxicity. 6000 ppm (1348/1460 mg/kg bw/day M/F) ↓ mean body weight (M): 11%**	Anon, 2015d DAR: B.6.3.1.2
Non-guideline Non-GLP	Dietary route 0, 2000, 4000 and 6000 ppm Equivalent to: Males (M): 0, 404, 960 and 1348 mg/kg bw/day Females (F): 0, 476, 886 and 1460 mg/kg bw/day	 ↓ mean body weight (m). 11 % ↓ mean body weight gain (F): 42%** <i>Organ weights</i> ↑ relative liver weights: 16.5%** (M) & 24% (F) 4000 ppm (960/886 mg/kg bw/day M/F) and 2000 ppm (404/476 mg/kg bw/day M/F) No statistically significant treatment-related findings. 	
28 day Mouse, Crl:CD-1, males & females, 5/sex/group GLP OECD 407 (2008) Deviations: none	Bixlozone Technical, batch PL13-0385 Purity: 99.2% Dietary route 0, 1000, 2000, 4000, and 5000 ppm Equivalent to: Males: 0, 187, 381, 788 & 985 mg/kg bw/day	There were no treatment-related deaths. 5000 ppm (985 / 1384 mg/kg bw/day M / F) ↓ body weight gain: 19 % (F) <i>Organ weights</i> ↑ absolute liver weight: 15 % (F) & 14 % (M) ↑ relative liver weight: 24 %** (F) & 13 %* (M) <i>Histopathology - liver</i> Hepatocellular hypertrophy: 3/5 F (2 minimal, 1 mild) & 4/5 M (2 minimal, 2 mild) <i>Clinical chemistry</i>	Anon, 2015c DAR: B.6.3.2.2

	Females: 0, 289, 554, 984 & 1384 mg/kg bw/day	 ↑ ALT: 137 %* (M) 4000 ppm (788 / 984 mg/kg bw/day M / F) Organ weights ↑ absolute liver weight: 18 %* (F) ↑ relative liver weight: 21.5 %** (F) <i>Histopathology - liver</i> Hepatocellular hypertrophy: 2/5 F (minimal) & 1/5 M (minimal) 2000 ppm (381 / 554 mg/kg bw/day M / F) & 1000 ppm (187 / 289 mg/kg bw/day M / F) No treatment-related findings. 	
90 day Mouse, CrI:CD1(ICR), males & females, 10/sex/ toxicology group, 12/sex/toxicokinetic group GLP OECD 408 (1998) Deviations: none	Bixlozone technical, batch PL14-0049 Purity: 96% Vehicle: acetone Dietary route 0, 1000, 2250, and 5000 ppm Equivalent to: Males: 0, 180, 414 & 930 mg/kg bw/day Females: 0, 257, 583 & 1185 mg/kg bw/day	There were no test-substance related deaths or clinical signs of toxicity. No clear treatment-related effects on body weight development or food consumption in all dose groups. 5000 ppm (930 / 1185 mg/kg bw/day M / F) <i>Organ weights</i> ↑ absolute liver weights: 23 %** (M) & 20 %** (F) ↑ relative liver weights: 23 %** (M) & 21 %** (F) <i>Histopathology - liver</i> Hepatocellular hypertrophy in 10/10 M (1 minimal, 9 mild) Hepatocellular hypertrophy in 3/9 F (1 minimal, 2 mild) 2250 ppm (414 / 583 mg/kg bw/day M / F) <i>Organ weights</i> ↑ absolute liver weights: 13 %* (F) ↑ relative liver weights: 17.5 %** (F)	Anon, 2016f DAR: B.6.3.3.2

		Histopathology - liver	
		Hepatocellular hypertrophy in 4/10 M (3 minimal, 1 mild)	
		Hepatocellular hypertrophy in 3/9 F (minimal)	
		<u>1000 ppm (180 / 257 mg/kg bw/day M / F)</u>	
		No treatment-related findings.	
18-month	Bixlozone technical	5000 ppm (647 / 834 mg/kg bw/day M / F)	Anon, 2017b
Mouse (Crl:CD1(ICR mice, males and	Batch PL14-0049	Organ weights	DAR:
females)	Purity 96 %	↑ relative liver weight > 15 %** (both sexes)	B.6.5.2
GLP	Dietary route	Histopathology - liver	
OECD 451 (2009)	0, 250, 1000, 5000 ppm	Hepatocellular hypertrophy:	
Deviations: none	Equivalent to:	7/10 at 52 weeks & 79 % incidence at 104 weeks (M)	
	Males: 0, 32, 126, 647 mg/kg bw/day	Histopathology - kidney	
	Females: 0, 43,	↑ pelvis dilation of kidney (M)	
	164, 834 mg/kg bw/day	Histopathology - stomach	
		\uparrow inflammation of glandular stomach (M)	
		Histopathology - epididymes	
		↑ incidence of reduced sperm in epididymes (M)	
		<u>1000 ppm (126 / 164 mg/kg bw/day M / F)</u>	
		Histopathology - stomach	
		\uparrow inflammation of glandular stomach (M)	
		Histopathology - epididymes	
		↑ incidence of reduced sperm in epididymes (M)	
		<u>250 ppm (32 / 43 mg/kg bw/day M / F)</u>	
		No treatment-related findings	

	(Dral dog studies	
7 day Dog, Beagle, males & females, 2/sex/group Non-guideline Non-GLP Animals were not sacrificed on completion of the study thus the clinical signs, body weight, food consumption, haematology and clinical (serum) chemistry could be measured.	Bixlozone technical, batch PL13-0385 Purity: 99.2% Dietary route: Initial dose groups: 0, 2500, 5000, 10000 ppm Additional dose group: 30000 ppm Equivalent to: Males: 0, 67, 185, 292 and 818 mg/kg bw/day	 Dral dog studies There were no treatment-related deaths. The only clinical sign of toxicity was the presence of a clear material around the mouths of males at 10000 ppm and females at 5000 ppm. 30000 ppm (818/716 mg/kg bw/day M/F) ↓ food consumption: 69% (M) & 98% (F) on days 0-1 Improvement in food consumption led to an overall body weight gain that was comparable with controls; nevertheless, the mean body weight of these dogs was still lower than controls by the end of the study (7.4% (M) & 3.8% (F). 	Anon, 2015f DAR: B.6.3.1.3
7 day	Females: 0, 79, 187, 244 and 716 mg/kg bw/day Bixlozone technical, batch PL14-0049	There were no treatment-related deaths and no clinical signs of toxicity.	Kappele K.V.
Dog, Beagle, males & females, 2/sex/group Non-guideline Non-GLP Animals were not sacrificed on completion of the study thus the clinical signs, body weight, food consumption, haematology and clinical (serum) chemistry could be measured.	Purity: 96.0% Vehicle: none (capsule) 0, 150, 350 and 550 mg/kg bw/day	There were no effects on mean body weights, body weight gains and food consumption.	(2016b) DAR: B.6.3.1.4
28 day Dog, Beagle, males & females, 2/sex/group	Bixlozone technical, batch PL14-0049 Purity: 96%	There were no treatment related deaths No statistical analysis was performed	Anon, 2016f DAR: B.6.3.2.3

	1	
GLP	Vehicle: acetone	30000 ppm (≈ 1015 / 1110 mg/kg bw/day M /
Dose-range finding	Dietary route	E)
study (loosely follows		Clinical signs: thin body condition (1 M), \downarrow
OECD 409)	0, 1000, 3000, 10000 & 30000	defecation (2 M)
	ppm	\downarrow body weight: 17 % (M) and 9 % (F)
	Equivalent to control, 1000, 3000,	\downarrow body-weight gain: 116 % (M) and 90 % (F)
	and 10000 ppm groups:	↓ food consumption led to food supplementation (M & F)
	Males: 0, 38, 134 & 370 mg/kg bw/d	Organ weights
	Females: 0, 39, 108 & 309 mg/kg bw/d	\uparrow relative liver weight: 80 % (F) and 53 % (M)
		\uparrow absolute liver weight: 30 % (M) and 63.5 % (F)
	(test substance intake for 30000 ppm males and	\uparrow relative kidney: 41 % (M) and 40 % (F)
	females could not be accurately	\uparrow absolute kidney weight: 20 % (M) and 28 % (F)
	calculated due to food supplementation; ≈ 1015 / 1110 mg/kg bw/day M / F)	Histopathology - liver
		Hepatocellular hypertrophy in 2 / 2 M (1 minimal & 1 mild)
		Hepatocellular hypertrophy in 2/2 F (mild)
		<u>10000 ppm (370 / 309 mg/kg bw/day M / F)</u>
		\downarrow body-weight gain: 17 % (M) and 54 % (F)
		\downarrow food consumption in M & F
		Organ weights
		↑ Relative liver weight: 28.5 % (F) and 20 % (M)
		\uparrow absolute liver weight: 19 % (M) and 21 % (F)
		↑ kidney weight in M: 22 % absolute and 23 % relative
		Histopathology - liver
		Hepatocellular hypertrophy in 2 / 2 M (minimal)
L		

		Hepatocellular hypertrophy in 2 / 2 F (minimal)	
		<u>3000 ppm (134 / 108 mg/kg bw/day M / F)</u>	
		↓ body weight gain: 45.5 % (F)	
		Organ weights	
		↑ relative liver weight: 14 % (F)	
		<u>1000 ppm (38 / 39 mg/kg bw/day M / F)</u>	
		No treatment-related findings.	
90 day	Bixlozone technical, batch PL14-0049	There were no treatment-related deaths or clinical signs of toxicity; there was no effect on	Anon, 2016g
Dogs, Beagle, males & females, 4/sex/group	Purity: 96 %	body weight or food consumption at any dose levels.	DAR: B.6.3.3.3
GLP	Vehicle: none (capsule)	750 mg/kg bw/day	
OECD 409 (1998)	0, 30, 100, 300, and 750 mg/kg/day	Organ weights	
		↑ absolute liver weights: 54 %** (F) & 21 % (M)	
		↑ relative liver weights: 46 %** (F) & 20 %** (M)	
		↑ relative thyroid weight: 54 % (F) & 21 % (M)	
		↓ prostate weight: absolute 41 % and relative 43 % and associated immaturity	
		Histopathology - liver	
		Hepatocellular hypertrophy in 2/4 males (minimal)	
		Clinical chemistry	
		↑ WBC (37 %* wk. 6), ↑ lymphocytes (43 %* wk. 6 & 39 %* wk. 12/13), ↑ LUC (+150 % wk 6) in F	
		<u>300mg/kg bw/day</u>	
		Organ weights	
		↑ relative liver weight: 21.5 %** (F)	

12 monthsBixlozone technical, batch PL14-0049Dogs, Beagle, males & females, 4/sex/groupBixlozone technical, batch PL14-0049QLPPurity: 96% Vehicle: none (capsule)OECD 409 (1998) Deviations: none0, 20, 100, and 500 mg/kg/day		↓ abs (19%) and rel (26.5%) prostate weight and associated immaturity 100 mg/kg bw/day Organ weights ↑ liver weights in F (27 %* absolute, 22 %** relative) 30 mg/kg bw/day No treatment-related findings. There were no treatment-related deaths or clinical signs of toxicity; there was no effect on body weight or food consumption at any dose levels. 500 mg/kg bw/day Haematology ↑ WBC (+35 % week 26*; +27 % week 52) ↑ monocyte absolute (+55% week 26*;+15 % week 52) ↑ lymphocytes absolute (+34 % week 26; +55 % week 52**) ↑ PT (+8 % week 26*; +13 % week 52**) in M 100 & 20 mg/kg bw/day No treatment-related findings.	Anon, 2017a DAR: B.6.3.4
	L	Dermal studies	I
21 day Rat, CrI:CD9(SD), males & females, 10/sex/group GLP OECD 410 (1981) Deviations : None	Bixlozone technical, batch PL14-0049 Purity: 99.2% Dermal route 0, 100, 300, and 1000 mg/kg bw/day	There were no deaths or clinical signs of toxicity 1000, 300 and 100 mg/kg bw/day No treatment-related findings.	Anon, 2016i DAR: B.6.3.5

10.9.1 Short summary and overall relevance of the provided information on specific target organ toxicity – repeated exposure

Target organ(s) identified in all species

The liver has been identified as a clear target organ in all species investigated. Increases in relative and absolute liver weights accompanied in some instances with minimal to moderate hepatocellular hypertrophy were repeatedly observed. The toxicological significance of the effects on the liver has been assessed by the Agency using a weight-ofevidence approach (WoE), with a clear distinction being made between effects that are clearly adverse and those which are potentially adaptive. This assessment has been carried out in line with the Technical Agreements for Biocides (TAB) entry and agreed at the Biocide Working Group-IV-2018 meeting (WGIV2018_TOX_6-2). The WoE approach for the evaluation of liver effects in repeated-dose toxicity studies has been described, based on several international reviews on liver effects (JMPR 2006 and 2015). Hepatocellular hypertrophy is typically related to increased functional capacity of the liver which allows the maintenance of homeostasis in the organism after xenobiotic exposure. A general increase in the size of the liver is observed (owing to cell enlargement and fluid accumulation); this is considered a potentially beneficial, adaptive response. However, there is the potential that the capacity of the homeostatic mechanisms may be exceeded and in these cases the organism would be unable to return to its previous state once exposure has ended (thus constituting an adverse response). Hypertrophy as an adaptive response which should not be accompanied by adverse histopathology (necrosis, apoptosis, pigment deposition or hyperplasia), or by substantial changes in clinical chemistry indicative of liver toxicity (decreased albumin or increased activities of ALT, AST, ALP, GGT, bilirubin or cholesterol). In line with the TAB entry, relative liver weight increases up to 15 %, that are not accompanied by other signs of liver dysfunction, have been considered by the Agency to be an adaptive rather than an adverse response in the evaluation of the liver effects of bixlozone (see Table 24 below).

Following the above criteria, it can be seen that the effects exerted upon the liver by bixlozone become adverse in the rat at doses of \geq 150 mg/kg bw/day (females, 90-days' exposure), at \geq 583 mg/kg bw/day in the mouse (females, 90-days' exposure) and at \geq 100 mg/kg bw/day in the dog (females, 90-days' exposure).

It would appear that the rat and the dog are more sensitive than the mouse to the liver effects, and that the female is the most sensitive sex across all species. These findings are concordant with the toxicokinetic evaluations which showed that systemic exposure was higher in female rats compared to male rats (the top dose was indeed set lower for females in the 90-day rat study) but was greater in male mice compared to female mice (please refer to Section **Error! Reference source not found.** for more details). Furthermore, the effect on liver weights and histopathological incidence and severity did not appear to increase to any great extent with the duration of treatment in any species,

which is supported by toxicokinetics evidence indicating that bixlozone and its metabolites did not accumulate in plasma or tissues following 14 days repeated dosing.

Table 24: Summary of the liver effects of bixlozone observed after dietary repeated
exposure in the rat, mouse and dog

Species	Sex	Duration of exposure	Dose at which effects become adverse (mg/kg bw/day)	Increase in relative weight at this dose (%)	Hepatocellular hypertrophy	Other adverse histopathological or biochemical findings
Rat	Male	28 days	182	15.5	3/5	None
Rat	Female	28 days	193	17	4/5	None
Rat	Male	90 days	505	37	10/10	↑ cholesterol, protein and calcium
Rat*	Female	90 days	150	17	1/10	↑ cholesterol, protein and calcium
Rat	Male F ₀	2-generations (reproductive)	140	19	None	None
Rat	Female F ₀	2-generations (reproductive)	187	21	18/25	None
Rat	Male F1	2-generations (reproductive)	140	14	None	None
Rat	Female F ₁	2-generations (reproductive)	187	21	20/25	None
Mouse	Male	28 days	> 985	13	4/5	None
Mouse	Female	28 days	984	21.5	2/5	None
Mouse	Male	90 days	930	23	10/10	None
Mouse*	Female	90 days	583	17.5	3/9	None
Dog	Male	90 days	750	20	2/4	None
Dog*	Female	90 days	100	22	None	None
Dog	Male	12 months	> 500	10	None	None
Dog	Female	12 months	> 500	10	None	None

* Lowest dose identified in the species for adverse liver effects

The kidney was also identified as a clear target organ in rats and dogs (but not in mice); increased kidney weights were observed in rats and dogs, with the rat being the more sensitive species and the male the more sensitive sex.

Target organs identified in the rat oral studies

In the rat, the main target organs of toxicity identified were the liver and kidney. Additional effects were seen in the thyroid, prostate and uterus.

Adverse effects on the liver

Adverse increased liver weights (> 15 % compared to controls, with or without hepatocellular hypertrophy) were seen from 182 / 193 mg/kg bw/day (males / females) in the 28-day study (Anon, 2015b) and from 150 mg/kg bw/day (females) in the 90-day study (Anon, 2016a). In addition, similar liver effects were seen from \approx 180 / 220 mg/kg bw/d (mean dose males / females) in the 2-generation study (Anon, 2016c) and at the top dose of 217 / 176 mg/kg bw/day (males / females) in the 2-year carcinogenicity study (Anon, 2017a) These liver effects were associated with alterations of some clinical-chemistry parameters indicative of liver toxicity (e.g. increased cholesterol, BUN, triglycerides) from 379 mg/kg bw/day (females) in the 28-day study, from 150 mg/kg bw/day (females) in the 90-day study and at the top-dose of 167 mg/kg bw/day in females in the 2-year carcinogenicity study.

Adverse effects on the kidney

Regarding adverse effects on the kidney, there were no histopathological or biochemical signs of adversity related to the kidney; however increased weights (absolute & relative to body weights > 10 % compared to control groups) indicative of an adverse effect were noted after 90 days' exposure from 121 mg/kg bw/day in males and 351 mg/kg bw/day in females; it was also noted that the relative weights remained high following 28 days of recovery. The effects on kidney weights after 28-days exposure were less pronounced. Treatment-related and adverse changes in kidney weights relative to body weight were also noted in the 2-generation reproductive toxicity study at the top dose in the F_0 generation (141 / 261 mg/kg bw males / females) and in the F1 generation (140 / 187 mg/kg bw males / females). In males, these weight changes were associated with chronic progressive nephropathy (CPN). In contrast to these short-term studies, there were no adverse effects noted for the kidneys (including kidney weights) in the 2-year carcinogenicity study at weeks 52 and 104 in both sexes up to the top-dose of 217 / 167 mg/kg bw/day (males / females). Overall, there were consistent adverse effects on kidney weights in both sexes in the rat short-term studies, which were associated with CPN in males.

Other findings

Mild follicular cell hypertrophy of the thyroid was observed at the top dose of 505 / 351 mg/kg bw/day (males / females) in the 90-day study without associated changes in thyroid weights; no such finding was seen following a recovery period of 28 days. However there were no clear thyroid weight or histopathology changes noted in the 28-day study or the 2-year year carcinogenicity study. Females showed a slight increase in the incidence of follicular cell adenoma (benign tumours) in the thyroid gland at the top-dose of 167 mg/kg bw/day however these tumour findings were regarded as chance findings unrelated to treatment. Overall there were no clear adverse effects on the thyroid in the rat following repeated administration of bixlozone.

In addition, there was increased prostate inflammation at the top dose of 140 mg/kg bw/d in the rat 2-generation study. The toxicological significance of this finding on reproductive organs is discussed further in the summary of the reproductive toxicity section.

Furthermore, systemic toxicity characterised by decrease in body weight and/or body weight gain were observed in females from 193 mg/kg bw/day in the 28-day study (and at 740 mg/kg bw/day for males), at the top-dose of 351 / 505 mg/kg bw/day (males / females) in the 90-day study, at the top dose of 167 / 217 mg/kg bw/day in the 2-year carcinogenicity study and at the top dose in the F₀ generation (141 / 261 mg/kg bw males / females) and in the F₁ generation (140 / 187 mg/kg bw males / females) in the 2-generation reproductive toxicity study.

Female rats were more sensitive than males; this is consistent with the indication that females are more highly exposed to bixlozone than males since parallel toxicokinetics investigations showed higher concentrations of bixlozone in females' blood compared to males.

<u>Mouse</u>

In the mouse, the main target organ of toxicity was the liver. There were no adverse effects noted on the thyroid. Additional effects on kidney, epididymes and stomach were noted following chronic exposure.

Adverse effects on the liver

Increased liver weights with associated histopathology (enlarged individual hepatocytes with expanded eosinophilic cytoplasm) were seen from the top-dose of 984 mg/kg bw/day (females only) in the 28-day study (Anon, 2015c), 930 / 583 mg/kg bw/day (males / females) in the 90-day study (Anon, 2016f), and 647 / 834 mg/kg bw/day (males / females) in the 18-month carcinogenicity study (Anon, 2017b). These effects were only associated with alterations of some clinical-chemistry parameters indicative of liver toxicity (e.g. increased ALT) at the top dose of 985 mg/kg bw/day (males) in the 28-day study. The adverse effects on the liver seen in the mouse occur at higher dose levels than the adverse effects observed in the rat.

Other findings

On chronic exposure, decreased sperm in the epididymes and chronic inflammation of the glandular stomach were seen in males from the mid dose of 126 mg/kg bw/day (1000 ppm), with kidney pelvis dilation noted in males at the top dose of 647 mg/kg bw/day (5000 ppm). Despite the uncertainties in these findings (sex-specificity, low biological plausibility), no robust argumentations (including appropriate HCD) have been provided by the applicant to discount their toxicological significance. The relevance of the reduced epididymal sperm counts observed in the 18-month chronic study is discussed further in the summary of the reproductive toxicity section (Section **Error! Reference source not found.**).

In addition to the toxic effects seen in the liver and these other organs, decreases in body weight and/or body weight gain were observed in females only at the top-dose of 1384 mg/kg bw/day in the 28-day study and in the carcinogenicity study at the top dose of 834 mg/kg bw/day.

<u>Dog</u>

In the dog, the main target organ of toxicity identified was the liver. Additional effects were seen in the prostate and WBC.

Adverse effects on the liver

Regarding adverse effects seen in the liver, increased absolute and relative liver weights to body weight with associated hepatocellular hypertrophy was observed in both sexes from 370 / 309 mg/kg bw/day (males / females) in the 28-day (oral, dietary) range-finding study (Anon, 2016f). In the following 90-day study (Anon, 2016g), the method of oral administration was changed from dietary to capsule owing to palatability issues noted in the 7-day (Anon, 2015f) and 28-day studies; in this study increased absolute and relative liver weights to body weight were seen from 100 mg/kg bw/day in females and at the top-dose of 750 mg/kg bw/day in males, accompanied with minimal hepatocellular hypertrophy in males only. However, no liver-related adverse effects were noted in the 12-month (oral, capsule) study up to the top dose of 500 mg/kg bw/day. Overall, the dog appears to be relatively less sensitive to the toxic effect of bixlozone on the liver compared to the rat.

Other findings

Thyroid weight was increased in at the top dose of 750 mg/kg bw/day in females and from 300 mg/kg bw/day in males in the 90-day study, but no associated histopathology was seen. The thyroid was not affected in the 28-day study up to the top dose of approx. 1340/1080 mg/kg bw/day (M/F) or in the 1-year study up to 500 mg/kg bw/day. It is most likely these changes in thyroid weight are a spurious finding.

Changes in kidney weights were seen from 38 mg/kg bw/day in males in the dietary 28day study. However, these changes were not reproduced after 90 days (up to 750 mg/kg bw/day) or 1 year treatment (up to 500 mg/kg bw/day) using capsules. It is possible that the kidney weight changes seen in the 28-day study were the consequence of the method of administration (dietary vs capsules) and associated severe toxicity due to palatability problems rather than the test substance itself. In addition, in the absence of any associated histopathology or changes in clinical-chemistry and urinalysis parameters indicative of kidney toxicity, these kidney weight changes are regarded as spurious findings.

Haematological changes (such as WBC, PT, LUC and lymphocytes absolute) were also observed in females at the top-dose of 750 mg/kg bw/day in the 90-day study and in males at 500 mg/kg bw/day in the 12-month study.

Reductions in prostate weight with associated immaturity were seen in the 90-day study from 300 mg/kg bw/day, but not up to 500 mg/kg bw/day in the 1-year study. On this basis, these prostate findings are considered to be of minimal toxicological significance. The prostate findings in the dog are discussed further in the summary of the reproductive toxicity section.

In addition to toxic effects noted in the organs above, body weight and body weights gain were severely affected in dogs after 28 days' dietary exposure due to palatability issue with the test substance. Hence the mode of administration of bixlozone for the 90-day and 12-month studies was changed from dietary to capsule; following this change there was no effects seen in body weight or the body weight gain at any dose tested for both sexes.

10.9.2 Comparison with the GB CLP criteria

STOT RE is assigned on the basis of a substance demonstrating evidence of significant or severe toxicity, generally at or below the oral guidance value of 100 mg/kg/day (for a classification in category 2) in a 90-day rat study. 'Significant' toxicity is taken to mean changes that clearly indicate functional disturbance or morphological changes that are toxicologically relevant. 'Severe' toxicity is considered to be more profound or serious and indicates changes that are of a considerably adverse nature with a significant impact on health.

The potential for bixlozone to cause specific organ toxicity following repeated exposure has been investigated in repeated-dose toxicity studies in rats, mice and dogs, where the liver and the kidney were identified as clear target organs. Supporting information has also been extracted from the chronic/carcinogenicity studies in rats and mice and a rat two-generation reproduction study. The effects occurring at doses relevant for classification are summarised in Table 25 below:

Table 25: Summary of the target organ adverse effects seen following repeatedexposure to bixlozone at doses relevant for STOT RE classification.

Study Guidance values for classification*	Effects occurring below the guidance value for classification in category 1	Effects occurring below the guidance value for classification in category 2
Rats (Crl: CD(SD), 7 days Cat 1 ≤ 100 mg/kg bw/day 100 < Cat 2 ≤ 1000 mg/kg bw/day	None; no doses relevant for Category 1 were tested.	7000 ppm (698/763 mg/kg bw/day M/F) ↓ mean food consumption (M): 16%** ↓ body weight gain (M): 24% Organ weights ↑ absolute liver weights: 30%** (M) & 31%** (F) ↑ relative liver weights: 37%** (M) & 35%**
		4000 ppm (441/434 mg/kg bw/day M/F) Organ weights ↑ absolute liver weights: 34.5%** (M) & 32%** (F) ↑ relative liver weights: 36%** (M) & 28.5%** (F)
Rats (CrI:CD9 (SD)), 28 days Cat $1 \le 30 \text{ mg/kg bw/day}$ $30 < Cat 2 \le 300 \text{ mg/kg}$ bw/day	None; no doses relevant for Category 1 were tested.	2500 ppm (182 / 193 mg/kg bw/day M / F) Liver weights ↑ relative liver weight: 17 %** (F), 15.5 %** (M) Histopathology – liver Hepatocellular hypertrophy: 4/5 minimal (F) & 3/5 minimal (M)
Rats (CrI:CD9 (SD)), 90 days. Cat 1 ≤ 10 mg/kg bw/day 10 < Cat 2 ≤ 100 mg/kg bw/day	None; no doses relevant for Category 1 were tested.	None at 500 ppm (29 / 37 mg/kg bw/day M / F). At the next dose of 2000 ppm (121 / 150 mg/kg bw/day M / F), the findings were:

Study Guidance values for classification*	Effects occurring below the guidance value for classification in category 1	Effects occurring below the guidance value for classification in category 2			
		 Organ weights ↑ liver weights in females: 16 %* absolute & 17 %** relative ↑ kidney weights in males: 15 %* (absolute) & 14.5 %** (relative) <i>Histopathology – liver</i> Hepatocellular hypertrophy 1/10 F (mild) <i>Clinical chemistry</i> ↑ cholesterol +44 %**, globulin +11 % and calcium +4.5 %* (F) 			
Rats (CrI:CD9 (SD)), 2 years Cat 1 ≤ 1.25 mg/kg bw/day 1.25 < Cat 2 ≤ 12.5 mg/kg bw/day	None; no doses relevant for Category 1 were tested.	None at 250 ppm (equivalent to 10/13 mg/kg bw/day M/F). (Note: adverse liver effects seen at the top dose of 217 / 167 mg/kg bw/day only)			
Rats (CrI:CD9 (SD)), 2 generation study – range- finding studies Cat 1≤ 10 mg/kg bw/day 10 < Cat 2 ≤ 100 mg/kg bw/day	F_0 parentsNone; no doses relevantfor Category 1 weretested.F_1 parentsNone; no doses relevantfor Category 1 were	<u>F₀ parents</u> None at 300/1000 ppm (17/20 and 56/62 mg/kg bw/day M/F). At the next dose of <u>3000 ppm 176/217 mg/kg bw/day (M / F)</u> , the following findings were: <i>Organ weights</i> ↑ liver weight in males (+ 15 % absolute & +19 % relative)			
	tested. <u>Offspring</u> None; no doses relevant for Category 1 were tested.	 ↑ relative kidney weight in males (+11 %) <u>F1 parents</u> None. At the next dose of 3000 ppm 176/217 mg/kg bw/day (M / F), the following findings were: Organ weights ↑ relative liver weights (+29 % F & +23 % M) 			

Study Guidance values for classification*	Effects occurring below the guidance value for classification in category 1	Effects occurring below the guidance value for classification in category 2			
		↑ absolute liver weights in F (+15 %) <u>Offspring</u> <u>1000 ppm (74 mg/kg bw/day M / F)</u>			
		<i>Organ weight</i> s ↑ relative liver weights in F (+15 %) ↑ absolute liver weights in F (+15%)			
Rats (CrI:CD9 (SD)), 2 generation study – main study Cat 1≤ 10 mg/kg bw/day	<u>F₀parents</u> None at 150 ppm (7/10 mg/kg bw/day M/F).	<u>Foparents</u> None at 34 / 49 mg/kg bw/day (M / F). At the next dose of 3000 ppm (<u>140 / 187</u> <u>mg/kg bw/day M / F</u>)), the following findings were:			
10 < Cat 2 ≤ 100 mg/kg bw/day	<u>F₁ parents</u> None at 150 ppm (7/10 mg/kg bw/day M/F).	<i>Organ weights</i> ↑ absolute liver weights: +13 %** (M) & +12%** (F)			
	<u>F1 pups</u> None at 150 ppm (7/10 mg/kg bw/day M/F).	 ↑ relative liver weights: +19 %** (M) & +21 %** (F) ↑ relative kidney weights: +13 %** (M) & +10 %** (F) 			
	<u>F2 pups</u> None at 150 ppm (7/10 mg/kg bw/day M/F).	Histopathology – liver Hepatocellular hypertrophy in F Histopathology – prostate ↑ mononuclear cell infiltration (chronic inflammation) in the prostate			
		<u>F1 parents</u> None at 34 / 49 mg/kg bw/day (M / F). At the next dose of 3000 ppm (<u>140 / 187</u> <u>mg/kg bw/day M / F</u>)), the following findings were: <i>Organ weights</i>			

Study Guidance values for classification*	Effects occurring below the guidance value for classification in category 1	Effects occurring below the guidance value for classification in category 2			
		 ↑ absolute liver weights in F (+13 %**) ↑ relative liver weights: +14 %** (M) & +21 %** (F) ↑ relative kidney weights: +13 %** (M) & +10 %* (F) <i>Histopathology - liver</i> Hepatocellular hypertrophy in F <i>Histopathology - prostate</i> ↑ mononuclear cell infiltration (chronic inflammation) in the prostate <u>F1 pups</u> None <u>F2 pups</u> None 			
Mouse (Crl: CD-1), 7 days Cat $1 \le 100 \text{ mg/kg bw/day}$ $100 < Cat 2 \le 1000 \text{ mg/kg}bw/day$	None; no doses relevant for Category 1 were tested.	None at 4000 ppm (960/886 mg/kg bw/day M/F) or 2000 ppm (404/476 mg/kg bw/day M/F).			
Mouse (Crl:CD-1), 28 days. Cat 1 ≤ 30 mg/kg bw/day 30 < Cat 2 ≤ 300 mg/kg bw/day	None; no doses relevant for Category 1 were tested.	None at 1000 ppm (equivalent to 180/257 mg/kg bw/day M/F). (Note: adverse liver effects seen from 788 / 984 mg/kg bw/day M / F)			
Mouse (CrI:CD-1), 90 days. Cat $1 \le 10 \text{ mg/kg bw/day}$ $10 < Cat 2 \le 100 \text{ mg/kg}$ bw/day	None; no doses relevant for Category 1 were tested.	None (Note: adverse liver effects seen from 414 / 583 mg/kg bw/day M / F)			
Mouse (Crl:CD-1), 18 month <i>Cat 1 ≤ 1.7 mg/kg bw/day</i>	None; no doses relevant for Category 1 were tested.	None; no doses relevant for Category 2 were tested.			

Study Guidance values for classification*	Effects occurring below the guidance value for classification in category 1	Effects occurring below the guidance value for classification in category 2			
1.7 < Cat 2 ≤ 17 mg/kg bw/day		(Note: inflammation of glandular stomach and reduced sperm in epididymis seen from 126 mg/kg bw/day in M)			
Dog (Beagle), 7 days (dietary)	None at 2500 ppm (equivalent to 67/79 mg/kg bw/day M/F).	None at 5000 or 1000 ppm (equivalent to 185/187 and 292/244 mg/kg bw/day in M/F, respectively).			
Cat 1 ≤ 100 mg/kg bw/day 100 < Cat 2 ≤ 1000 mg/kg bw/day		30000 ppm (818/716 mg/kg bw/day M/F) ↓ food consumption: 69% (M) & 98% (F) ↓ mean body weight at the end of the study: 7.4% (M) & 3.8% (F)			
Dog (Beagle), 7 days (capsule)	None; no doses relevant for Category 1 were tested.	None up to the top dose of 550 mg/kg bw/day.			
Cat 1 ≤ 100 mg/kg bw/day 100 < Cat 2 ≤ 1000 mg/kg bw/day					
Dog (Beagle), 28 days (dietary)	None; no doses relevant for Category 1 were tested.	3000 ppm (134 / 108 mg/kg bw/day M / F) Organ weights			
Cat 1 ≤ 30 mg/kg bw/day 30 < Cat 2 ≤ 300 mg/kg bw/day		 ↑ relative liver weight: 15 % (F) 10000 ppm (370 / 309 mg/kg bw/day M / F) Organ weights ↑ Relative liver weight: 28.5 % (F) and 20 % (M) ↑ absolute liver weight: 19 % (M) and 21 % (F) ↑ kidney weight in M: 22 % absolute and 23 % relative <i>Histopathology - liver</i> Hepatocellular hypertrophy in 2 / 2 M (minimal) Hepatocellular hypertrophy in 2 / 2 F 			
Dog (Beagle), 90 days	None; no doses relevant	(minimal) 100 mg/kg bw/day			
(capsule)	for Category 1 were tested.	Organ weights ↑ liver weights in F (27 %* absolute, 22			
Cat 1 ≤ 10 mg/kg bw/day		%** relative)			

Study Guidance values for classification*	Effects occurring below the guidance value for classification in category 1	Effects occurring below the guidance value for classification in category 2
10 < Cat 2 ≤ 100 mg/kg bw/day		
Dog (Beagle), 1 year (capsule) Cat $1 \le 2.5 \text{ mg/kg bw/day}$ $2.5 < Cat 2 \le 25 \text{ mg/kg}bw/day$	None; no doses relevant for Category 1 were tested.	None at 20 mg/kg bw/day. (Note: haematology changes seen at the top dose of 500 mg/kg bw/day in M)
Rats (Crl:CD9(SD)), 28 days (dermal)	None; no doses relevant for Category 1 were tested.	None at 100 or 300 mg/kg bw/day.
Cat 1 ≤ 60 mg/kg bw/day 60 < Cat 2 ≤ 600 mg/kg bw/day		

*Guidance values for the rat have been used in absence of specific values for the dog, to aid comparison. Haber's rule was used to adjust the standard guidance values, which are for studies of 90-day duration, for studies of longer or shorter durations. The Guidance on the application of the CLP Criteria (version 5.0 July 2017) highlights that this rule should be used cautiously with due consideration of the nature of the substance in question and the resulting value produced.

The classification for specific target organ toxicity-repeated exposure Category 1 applies for substances that have produced significant toxicity in humans or that, on the basis of evidence from studies in experimental animals, can be presumed to have the potential to produce significant toxicity in humans following repeated exposure. Substances are classified in Category 1 for target organ toxicity (repeat exposure) on the basis of: reliable and good quality evidence from human cases or epidemiological studies; or observations from appropriate studies in experimental animals in which significant and/or severe toxic effects, of relevance to human health, were produced at generally low exposure concentrations.

Adverse effects on the liver – Category 2 assessment

The liver has been identified as a clear target organ in all species investigated with increases in relative and absolute liver weights accompanied in some instances with minimal to moderate hepatocellular hypertrophy. Changes in clinical chemistry indicative of liver toxicity were observed at the highest dose levels.

In the rat, adverse liver effects occurring below the guidance values for classification in category 2 were reported in the 28-day study (182 / 193 mg/kg bw/day (M / F)) with increased relative liver weight and minimal associated histopathology. Similar findings were also noted at levels slightly above the guidance values in the 90-day study (at 121 / 150 mg/kg bw/day (M / F)) where the changes persisted following a 28-day recovery period, and in the 2-generation reproductive toxicity study (140 / 187 mg/kg bw/day M / F; F0 and F1 parents). Therefore, it cannot be entirely excluded that adverse liver effects could occur at 100 mg/kg bw/day in both studies. It is noted that there were no liver findings at the lowest dose range of 29 - 49 mg/kg bw/day.

In the dog increased relative liver weights was observed in the 28-day study (range-finding oral, dietary) in females at 134 / 108 mg/kg bw/day M / F and in both sexes at levels approaching the guidance values for classification with associated hepatocellular hypertrophy (370 / 309 mg/kg bw/day (M / F)). However the reliability of the finding is low as only 2 animals/sex/group were used in this study and animals experienced significant palatability issues leading to severe toxicity. The method of oral administration was consequently changed from dietary to capsule in the following 90-day study; yet, increased liver weights were also reported at 100 mg/kg bw/day in that study. Therefore, adverse liver effects occurred at levels relevant for classification in Category 2 in the dog. It is nevertheless noted that no liver-related adverse effects were noted in the 12-month (oral, capsule) dog study up to the top dose of 500 mg/kg bw/day; thus it appears the dog is relatively less sensitive to the toxic effect of bixlozone on the liver compared to the rat.

No adverse effects were seen in the mouse at levels relevant to the guidance values for classification in Category 2.

In conclusion, adverse liver findings are seen in the rat and the dog at doses below the guidance values for classification in category 2 in 28-day studies, and at levels equal or slightly above the guidance values for classification in category 2 in the respective 90-day studies. The Agency also noted that the effect on liver weights and histopathological incidence and severity did not appear to increase to any great extent with the duration of treatment in any species. This observation was supported by toxicokinetics evidence indicating that bixlozone and its metabolites did not accumulate in plasma or tissues following 14 days repeated dosing (Section **Error! Reference source not found.**). For this reason the standard guidance values adjusted according to Haber's rule for 28-day exposure studies should be used with caution (Guidance on the application of the CLP Criteria (version 5.0 July 2017)) especially for the dog study in which only 2 animals/ sex/group were used.

Thus, given the consistency of the adverse liver effects reported in the rat and dog following repeated-dosing of bixlozone at levels above the guidance values set for classification in Category 2 in the 90-day studies, the dog being less sensitive to liver effects compared to the rat and the apparent lack of increase in severity of the effects with

the duration of treatment in any species, the Agency concludes that bixlozone should not be classified for STOT RE Category 2 for liver effects.

Adverse effects on the kidney

The kidney was also identified as a target organ in rats, with males being the more sensitive sex. Increased relative kidney weights were observed, although this change was not accompanied with histopathology findings. These changes were first observed at levels where adverse liver effects also occurred. It is further noted that the relative kidney weights remained high in the rats treated for 90-days at levels close to the guidance values for classification (121 / 150 mg/kg bw/day M / F)) during the 28-day recovery period.

In the dog kidney weight changes were seen at 370 / 309 mg/kg bw/day (M / F) in the 28day study (range-finding oral, dietary) but not in the 90-day and 12-month dog studies (oral, capsule). These changes were considered to be spurious findings as the likely consequence of the method of administration (dietary vs capsules) and associated severe toxicity due to palatability problems rather than the test substance itself.

In conclusion, the kidney changes seen in the rat and the dog are considered milder in severity than those seen in the liver and occurring at values above the guidance values set for classification in Category 2 for all species; thus no classification is warranted.

Other findings

There were no other specific organ findings (including neurotoxicity) or systemic toxicity noted at doses relevant for classification.

Overall conclusion

Overall, it is concluded that there is sufficient evidence in the relevant repeated-dose studies to conclude that bixlozone should not be classified for STOT-RE.

10.9.3 Conclusion on classification and labelling for STOT RE

Not classified – conclusive but not sufficient for classification.

10.10 Germ cell mutagenicity

The genotoxic potential of bixlozone was tested both in vitro and in vivo, in a range of modern (2018) genotoxicity assays, conducted in accordance with relevant OECD test guidelines and in compliance with GLP. The available in vitro studies are a bacterial reverse mutation assay (Ames test), a mammalian chromosomal aberration assay using Chinese hamster

ovary (CHO-K1) cells and a mammalian cell gene mutation assay (Mouse Lymphoma Assay). The available in vivo study is a mammalian erythrocyte micronucleus test in the rat.

Method, guidelin e, deviatio ns if any	Test substance	Relevant information about the study including rationale for dose selection (as applicable)	Observations	Reference
Ames test	Bixlozone Technical	S. typhimurium	Negative	Bruce, S. (2018)
Plate incorpor ation methodo logy OECD Nº 471 (1997) Deviatio ns: none GLP: yes	Batch: JB- Bixlozone - 201603004 Purity: 96.82 %	strains TA 98, TA 100, TA 1535, TA 1537 and the WP2 <i>uvr</i> A strain of <i>E.</i> <i>coli</i> Concentrati ons: 0, 5, 15, 50, 150, 500, 1500 and 5000 µg / plate ± S9 (Aroclor 1254- induced rat liver S9) Vehicle control: DMSO Adequate positive controls used.	Precipitation of the test item was observed in both experiments at 5000 µg per plate under all conditions; cytotoxicity was observed from 1500 or at 5000 µg per plate under most conditions. Reference positive controls mutagens in test produced a distinct increase in revertant colonies within HCD provided by the laboratory. Vehicle controls values were also within the HCD provided. No positive mutagenic responses observed with or without S9 up to the limit of cytotoxicity and / or solubility.	DAR: B.6.4.1.1

Table 26: Summary of mutagenicity/genotoxicity tests in vitro

Chromos omal aberratio n study CHO cells OECD Nº 473 (2016) Deviatio ns: none GLP:	Bixlozone Technical Batch: JB- Bixlozone - 201603004 Purity: 96.82 %	Treatments: $4-h \pm S9;$ 20-h - S9 Concentrati ons: 0, 20, 40, 80, 100, 120, 140, 160, 180 µg/mL used in triplicate in main experiment. Vehicle	Cytot the 4 hour treatr All co descr Guide Clast conce	oxicity hour t treatm nent co ntrols ibed ir eline 4 ogenic	obser reatmo ent + onditic fulfille the s 73. follov on of 1	ved a ent wi S9, ≥ on with d the tudy tudy ving 4	ithout S 80 µg/ hout SS require report a	entrati $S9, \ge 1$ mL in Θ . ements and in tment	ons ≥ 40 µg/ the 20 s for a the OE with S	mL ii hour valid ECD 9 at t	test as the top	Roy, S. (2018) DAR: B.6.4.1.2
yes		control: DMSO Positive		Summary results from the main chromosome aberration assay (n = 2):								
		controls: mitomycin C (MMC) for treatment without S9; cyclophosp	ndition	Ice	n (JmL)	Cytotoxicity (% from control) ^a	per Cell ^{b,d}		Aberrant Cells	hanges	Total polyploid cells (Mean %) ^e	
		hamide (CP) for treatments with S9.	Treatment condition	Test Substance	Concentration (µg/mL)	Cytotoxicity	Aberrations ∣ Mean ± SD	Numerical (Mean %) ^b	Structural (Mean %)°	Carrying exchanges	Total polypic %) ^e	
				ND SO	NA	-	0.013 ± 0.115	1.3	1.3	0	1.3	
			very	cal	80	-6	0.010 ± 0.100	1.7	1.0	0	1.3	
			+ 16 h Recovery nout S9	ae Technical	120	26	0.023 ± 0.151	2.0	2.3	0	2.0	
			4-h + 16 h Without S	Bixlozone T	160	50	0.017 ± 0.128	1.7	1.7	0.5	1.7	
				DMSO	NA	-	0.017 ± 0.012 8	2.7	1.7	0	2.0	
			very	ផ្ក	40	7	0.010 ± 0.100	2.7	1.0	0.5	1.3	
			+ 16 h Recovery 1 S9	Bixlozone Technical	80	33	0.033 ± 0.180	2.7	3.3	1	2.0	
			4-h + 16 With S9	Bixlozon	140	57	0.133 ± 0.360	3.0	12.7* *	2.5	2.0	

Method, guidelin e, deviatio ns if any	Test substance	Relevant information about the study including rationale for dose selection (as applicable)	Obse	ervatio	ns							Reference
				СР	5	47	0.247 ± 0.491	2.3	22.0* *	6	2.3	
				DM SO	NA	-	0.013 ± 0.115	1.7	1.3	0.5	1.7	
				cal	20	20	0.007 ± 0.082	3.0	0.7	0	2.7	
				Bixlozone Technical	40	44	0.010 ± 0.100	2.7	1.0	0	2.7	
			20-h Without S9	Bixlozo	80	60	0.010 ± 0.100	1.3	1.0	0	1.3	
			20-h W	MΜO	0.1	11	0.200 ± 0.505	0.7	17.3* *	8.5	0.7	
			Cyclo ** p ≤ a. Ba b. Inc c Do d. Se e. Do	phosph 0.01. sed on ludes p bes not verely d	amide cell gro olyploi include lamag nclude	; NA: I owth ir id and e cells ed cell e endo	nhibition endo-re with on Is count -redupli	licable relative duplic ly gaps ed as	; Fisher ve to so ated ce s 10 aber	r's Ex Ivent Ils.	act Test: control.	

L5178Y/	Bixlozone	Concentrati	Negative	Dutta, A.
TK+/-	Technical	ons: 0, 7.81,		(2018)
Mouse Lympho ma cells mutagen icity study OECD Nº 490 (2016) Deviatio ns: none GLP: yes	Batch: JB- Bixlozone - 201603004 Purity: 96.82 %	15.6, 31.3, 62.5, 125, 175, 200 and 250 µg/mL 4-h treatment + S9 Concentrati ons: 0, 15.6, 31.3, 62.5, 125, 150 and 200 µg/mL 4-h treatment - S9 Concentrati ons: 0, 7.81, 15.6, 31.3, 62.5, 125, 175 and 200 µg/mL 24-h treatment - S9 Vehicle control: DMSO Positive controls: methyl methane sulfonate (MMS) for treatment without S9; 7,12- Dimethyl- benz(a)anth racene (DMBA) for treatments with S9.	Precipitate observed at 250 µg/mL at the beginning of treatment in all tests. Bixlozone did not affect the pH of the cultures. The positive and negative controls were acceptable according to the OECD Guideline criteria. No induction of forward mutations at the thymidine kinase locus in L5178Y mouse lymphoma cells, either with or without S9, up to cytotoxic concentrations.	DAR: B.6.4.1.3

Table 27: Su cells in vivo	-	mutagenicity/g	enotoxicity tests in mammalian somatic o	or germ
Method	Tost	Relevant	Observations	Reference

Table 27: Summary of mutagenicity/genotoxicity tests in mammalian somatic or germ cells in vivo	

Method, guideline, deviations if any	Test substance	Relevant information about the study (as applicable)	Obser								Reference
Rat micronucleus assay in vivo (oral gavage) OECD Nº 474 (2016) Deviations: none	Bixlozone Technical Batch: JB- Bixlozone - 201603004 Purity:	Concentrations: 0, 500, 1000 and 2000 mg/kg bw/day Vehicle: 0.5 % (w/v) CMC (400 cPs) in 5 % (w/v) Tween® 80 in	within No inc bone 2000 r Sumn	the H(crease marrov mg/kg nary	CD p in t w of bw. of	rovideo he inc male r <u>the i</u>	d by the idence ats up t	labora of Mn o the I lian	PCEs ir limit dos erythro	the se of	Anon, 2018b DAR: B.6.4.2
GLP: yes	96.82 %	deionized water Treatment on two consecutive days 24-h apart The doses were chosen upon toxicological information provided by the applicant to the	Treatment	O Dose (mg/kg/day)	م No. of Animals/Group	% PCE (mean ≠ SD)	% change in % PCE compared to control	00 % MnPCE (mean ± SD)	MnPCE / PCE Scored		
		laboratory, and an additional 2 animals were dosed at 2000 mg/kg bw to cover for any possible mortality.	Vehicle		5	52.1 ± 1.0 52.1 ± 0.4	-1	0.08 ± 0.02 0.07 ± 0.02	13 / 2000 0		
		Positive control generated in a recent study from male rats treated once with	Bixlozone	1000 2000		51.8 ± 0.7	-2 -5	0.09 ± 0.02 0.09	17 / 2000 0 18 /		
		cyclophosphami de monohydrate (CP) at 40 mg/kg.	СР	40	5	± 1.3** 43.2 ± 3.1**	-18	± 0.02 2.48 ± 0.21*	2000 0 495 / 2000 0		
			Dunne	tt's Tes 6 MnP0 6	t or T	-Test	-		with Pos .269, R-		

10.10.1 Short summary and overall relevance of the provided information on germ cell mutagenicity

In vitro studies

The genotoxic potential of bixlozone has been investigated in 3 in vitro studies, all conducted in accordance with appropriate OECD test guidelines and in compliance with GLP.

In a reverse mutation assay (Ames test) and in an in vitro L5178Y/TK+/- mouse lymphoma cells mutagenicity study there was no evidence of genotoxicity under any of the tested conditions up to the limit of cytotoxicity and / or solubility. Furthermore, there was no evidence of mutagenic potential with bixlozone in a mouse lymphoma cell mutation assay.

In the in vitro mammalian chromosomal aberration assay for the 4 and 20 hour treatments without S9, no statistically significant or dose-dependent increases in structural aberrations were observed at any concentrations. However, following the 4 hour treatment with S9 a dose-dependent increase in chromosomal and chromatid structural aberrations was observed. The increase in chromosomal aberrations was statistically significant at the top concentration of 140 µg/mL (12.7 % aberrant cells vs 1.7 % in negative control, $p \le 0.01$ Fisher's Exact test and $p \le 0.05$ Cochran-Armitage test) and above the historical 95 % control value (0.00 % to 3.88 %); cytotoxicity was extensive at this concentration (47 % from control). All controls fulfilled the requirements for a valid test as described in the study report and in the OECD test guidelines.

Overall, under the conditions of this study, there was evidence of a clastogenic potential of bixlozone in vitro, in the presence of metabolic activation at the top concentration of 140 μ g/mL, at which cytotoxicity occurred. Thus, from the available studies, there is some evidence that bixlozone has the ability to damage chromosomes in vitro.

In vivo study

In a rat bone marrow micronucleus study, doses of 0, 500, 1000 or 2000 mg/kg bw of bixlozone technical were administered to 5 males per group by oral gavage on two consecutive days approximately 24 hours apart.

No mortality occurred at any dose level during the course of the definitive assay and there were indications of a dose-related systemic exposure to bixlozone and/or its metabolites. Clinical signs were seen in a dose-related manner; piloerection occurred in animals treated at 500 and 1000 mg/kg bw whilst piloerection, hunched position and diarrhoea were noted in animals treated at the maximum dose of 2000 mg/kg bw. There was also a dose-dependent decrease in body weight gain observed in the treated animals compared to the controls.

There was a statistically significant decrease (- 5 %) in the ratio of immature to mature erythrocytes observed at 2000 mg/kg/day dose group compared to the negative control group, indicating the test substance induced bone marrow toxicity. However, this reduction in this ratio did not exceed the OECD recommended value of -20 % of the vehicle control proportion. Nevertheless, exposure of the bone marrow to the test item is further supported by kinetic studies in the rat showing that bixlozone and/or its metabolites were systemically available and reached the bone marrow (Section **Error! Reference source not found.** - study conducted by Anon, 2017h).

There were no statistically significant increase in the incidence of MnPCEs in the treated groups, when compared to the negative control group (ANOVA followed by Dunnett's posthoc analysis, p > 0.05). The positive and negative controls values were within the HCD provided by the laboratory. Overall, there was no evidence of a clastogenic or aneugenic effect of bixlozone in this study up to the limit dose of 2000 mg/kg/day. Overall, it was concluded that bixlozone is not genotoxic in vivo.

10.10.2 Comparison with the GB CLP criteria

Bixlozone has been tested for its potential genotoxic properties in three *in vitro* assays and one in vivo test. From the available studies it appears that bixlozone has the ability to damage chromosomes in vitro. However, this finding was not reproduced in vivo in a micronucleus assay in rats (tested up to the limit dose of 2000 mg/kg bw/d). In accordance with the CLP regulation, positive results from in vitro studies alone are not sufficient to classify for germ cell mutagenicity. Therefore, bixlozone does not meet the requirements for classification for germ cell mutagenicity.

10.10.3 Conclusion on classification and labelling for germ cell mutagenicity

Not classified – conclusive but not sufficient for classification.

10.11 Carcinogenicity

The long term toxicity and carcinogenic potential of bixlozone was investigated in two carcinogenicity/chronic toxicity studies; one in the rat and one in the mouse. Both studies available were conducted according to guidelines and GLP.

Table 28: Summary of animal studies on carcinogenicity

```
<u>Note:</u>

\uparrow\downarrow denote an increase or decrease in a parameter with respect to the control value

Statistical significance: * p \le 0.05, ** p \le 0.01

abs. = absolute

rel. = relative
```

Method, guidelin e, deviatio ns if any, species , strain, sex, no/grou p	Test substance , dose levels duration of exposure	Results	Refere
Dietary 24-	Bixlozone technical	Chronic phase – 12 months	Anon, 2017a
month		<u>5000/3000 ppm (217 / 167 mg/kg bw/d)</u>	
Rat	Batch PL14-	↓ BW-gain in females (10%** days 1-344)	DAR: B.6.5.1
(Crl:CD (SD)	0049,	↑ liver weight in F (18%*absolute & 11%* relative)	
rats, males	Purity 96 %	<u>1000 ppm & 250 ppm</u>	
and females)	Doses: 0, 250, 1000, 5000/3000	No adverse effects	
N = 50/sex/g roup +	ppm Equivalent	Carcinogenicity phase – 24 months	
10/sex/g roup for	to:	Non-neoplastic findings	
the chronic	Males: 0, 10, 41, 217	<u>5000/3000 ppm (217 / 167 mg/kg bw/d)</u>	
toxicity evaluati	mg/kg bw/day	Dermal atonia and thin body condition in F	
on	Females:	\downarrow body weight gain for both sexes (9-14%** M and 14-24.5%** F)	
GLP yes	0, 13, 53, 167 mg/kg	Organ weights	
OECD 453	bw/day	\uparrow relative liver weight > 15 % ^{**} (both sexes)	
(2009)	The substance	\downarrow cholesterol**, albumin*, calcium**, total protein* (F)	
Deviatio ns: none	dose levels were	Histopathology findings - liver	
The	selected from the	Hepatocellular hypertrophy:	
study was	previous 28- and 90-	7/10 at 52 weeks & 79 % incidence at 104 weeks (M)	
conduct ed following	day oral dietary studies in	10/10 at 52 weeks & 74 % incidence at 104 weeks (F)	

the		11.	mata a allula -		alst'									
the	rats (Section	He	epatocellular	vacu	ioiatio	JU:								
version of the	(Section Error!	7/	10 at 52 wee	ke &	32 %	inci	dence	at 104	wee	(N)	1)			
OECD	Error! Reference	'		1.5 0	JZ /0			201104	**66	10 (10	·/			
453 i.e.	source not	10	10/10 at 52 weeks & 74 % incidence at 104 weeks (F)											
adopted	found.).		,			,				(. ,			
in 2009.	The high	10	<u>1000 & 250 ppm</u>											
The	dose of													
guidelin	5000 ppm	No	adverse effe	ects										
e has	and 3000		Neoplastic findings											
since	ppm for	Ne												
been	males and													
	females,		one attributat		expo	osure	e to bi	xlozone	up to	o the	high	est d	ose test	
in June	respectivel	(50	000/3000 ppi	m).										
2018.	y was	_	_				_		_	_				
Change	estimated		elected neop					-	-					
s from	to	ch	ronic/carcir	oge	nicity	y rat	stud	y with b	oixloz	zone				
the 2009	approach								I				k	
version	the							HCD					HCD	
are	Maximum			Males				Mean %	Females				Mean %	
consider	Tolerated		Dose-levels					% incide					% incide	
ed minor	Dose (MTD)		(ppm)	0	250	10	500	nce	0	250	100	300	incide nce	
			(ppin)	U	230	00	0	(incide		230	0	0	(incide	
•	based on						ľ	nce			ľ	Ĭ	nce	
	the findings							range)					range)	
	of the 90-		Dose	0	10	41	217		0	13	53	167		
	day rat		(mg/kg	Ŭ	10		2.17		Ŭ	10		107		
	study		bw/day)											
	, ,			<u> </u>	50	50	<u> </u>		<u> </u>	50	50	<u> </u>		
			Skin <i>N examined</i>	60	50	50	60		60	50	50	60		
			N examined											
			Fibroma,	0	0	0	1	2.3 ^c	0	0	0	0		
			benign				(1.6	(1.43-						
			(%				7)	8.33)						
			incidence)											
			Fibrosarco	0	0	0	3	1.26 ^c	1	0	0	0		
			ma,				(5.0	(1.43 -						
			malignant)	7.14)						
			(%											
			incidence)											
			1-sided		1.0	1.0	0.15			Ν	ID			
					00	00	75							
			pairwise		00		1		1					
			pairwise comparison											
			-											
			comparison (p)ª			206			-					
			comparison (p)ª 1-sided			206			-					
			comparison (p) ^a 1-sided trend test			0206								
			comparison (p) ^a 1-sided trend test (p) ^b		0.0						10			
			comparison (p) ^a 1-sided trend test (p) ^b Thyroid	58		206	60		60	50	49	60		
			comparison (p) ^a 1-sided trend test (p) ^b	58	0.0		60		60	50	49	60		

C cell adenoma, benign	7	10	4	5		5	5	6	5	
C cell carcinoma, malignant	1	0	0	0		2	1	0	1	
Combined C-cell carcinoma/ adenoma	8	10	4	5		7	6	6	6	
Follicular cell adenoma, benign (% incidence)	2 (3. 44)	0 (0. 00)	3 (6. 4)	2 (3.3 3)		0 (0. 00)	0 (0. 00)	1 (2. 04)	2 (3.3 3)	HCD 1999- 2017 1.30 ^d (0.0 - 6.12)
1-sided pairwise comparison (p)ª		٨	ID	1			1.0 00	0.4 80	0.2 20	HCD 2009- 2017 (1.54 – 4.69)
1-sided trend test (p) ^b							0.0	408		
Follicular cell carcinoma, malignant	0	0	1	0		0	1	0	1 (1.7)	HCD 1999- 2017 0.41 ^d
1-sided pairwise comparison (p)ª		٨	ID				0.5 67	0.4 80	0.1 24	(0.0 – 3.33) HCD 2009- 2017
1-sided trend test (p) ^b							0.0	255		(1.43 – 1.67)
 ^a 1-sided pairwis ^b 1-sided trend to Statistical Signif Common tumou * Statistically sig ND = Not determ NA = not availab ° HCD mean and Ashland laborate Groups for male ^d HCD mean and 	est ind icance r - p <br nifica nined ble d rang ory): 0 s: 21 d rang	cludin e: Rar 0.005 nt at t ge for)8 Feb / 31; ge for	g 0 p e turr (tren he de Crl:C o 200 Crl:C	pm an nour - d), p< efined D(SD) 1 - 08	d active p<0.025 0.01 (pai significa) male ra Jan 201) female	treatn (trend irwise nce le ts – s 3; Nu rats –	nent (d), p<) vel ub-ch mber	oroup 0.05 oronic of Stu	s (pairw (Cha udies/ nic (Cł	rles Rive /Control

Dietary 18-	Bixlozone technical	Non-neop	lastic fi	nding	s						Anon, 2017b						
month	Batch	<u>5000 ppm</u>									DAR:						
Mouse (Crl:CD1	PL14-0049	↓ cumulativ	/e body	weight	t gain fo	r F > 10	%				B.6.5.2						
(ICR mice,	Purity 96 %	Organ wei	ghts														
males and	Doses: 0, 250, 1000,	↑ relative li	ver wei	ght > 1	5 %** (b	oth sexe	es)										
females)	5000 ppm	Histopatho	logy fin	dings													
GLP yes	Equivalent to:	Hepatocellular hypertrophy: 7/10 at 52 weeks & 79 % incidence at 104 weeks (M) ↑ pelvis dilation of kidney (M)															
OECD 451 (2009)	Males: 0, 32, 126,																
Deviatio	647 mg/kg bw/day	↑ inflamma															
ns: none	Females:	↑ incidence	e of redu	iced sp	perm in o	epididyn	nes (M)										
The study was conduct ed	0, 43, 164, 834 mg/kg bw/day	Non-neop carcinoge		-	-		-										
following		Diet	Males	(n = 50	0)		Fema	iles (n =	= 50)								
the version of the		concent ration (ppm)	0	250	1000	5000	0	250	1000	5000							
OECD 453 i.e. adopted in 2009. The		Bixlozon e intake (mg/kg bw/day)	0	32	126	647	0	43	164	834							
guidelin		non-neop	lastic h	istopa	athology	y finding	gs (all a	animals	n = 50)]						
e has since						Liver											
been updated in June 2018.		Hypertro phy, hepatoc ellular	4	2	11	18	1	0	0	1							
Change s from		Minimal	3	1	6 ^a	7	1	0	0	0	1						
the 2009		Mild	0	0	1	6	0	0	0	0	1						
version are		Moderat e	1 ^a	1	4 ^a	5 ^a	0	0	0	1 ^b							
minor.		% incidenc e	8	4	22	36	2	-	-	2							

	Epididymides										
Reduce d sperm, luminal	7	7	11	12							
Minimal	1	1	none	none							
Mild	2	1	3	3	-						
Moderat e	3	5	6	7							
Severe	1	none	2	2	-						
% incidenc e	14	14	22	24							
HCD (max) ^c	13 (21	.7 %)	1	1							
			I	Kidneys							
Pelvis dilation	4	4	4	9	0	0	0	0			
Minimal	4	1	4	3	0	0	0	0			
Mild	0	3	0	5	0	0	0	0			
Moderat e	0	0	0	1	0	0	0	0			
% incidenc e	8	8	8	18	0	0	0	0			
HCD (max) ^c	13 (21	.7 %)	1		-	-	-				
			Stoma	ich, glar	ndular						
Chronic inflamm ation	5	7	9	10	0	1	2	1			
Minimal	5	6	9	10	0	1	2	1			
Mild	0	1	0	0	0	0	0	0			
% incidenc e	10	14	18	20	0	2	4	2			
HCD (max)⁰	2 (3.33	8 %)	1	1	1 (2.04	4 %)		I			

incidence of reduced sperm in epididymes (M) <i>eoplastic findings</i> one attributable to exposure to bixlozone up to the highest dose te 5000 ppm). eoplastic histopathology findings in the 18-month oral arcinogenicity study in CD-1 mice	<u>)0 ppm</u>																		
incidence of reduced sperm in epididymes (M) eoplastic findings one attributable to exposure to bixlozone up to the highest dose te ioo0 ppm). eoplastic histopathology findings in the 18-month oral arcinogenicity study in CD-1 mice Netrophysical and the state of the stat	topatholo																		
eoplastic findingsone attributable to exposure to bixlozone up to the highest dose te sooo ppm).eoplastic histopathology findings in the 18-month oral arcinogenicity study in CD-1 miceDiet colspan="6">Males (n = 50)Fermales (n = 50)HC month oral arcinogenicity study in CD-1 miceDiet colspan="6">Males (n = 50)Fermales (n = 50)HC month oral arcinogenicity study in CD-1 miceDiet colspan="6">Males (n = 50)Fermales (n = 50)HC month oral arcinogenicity study in CD-1 miceDiet colspan="6">Males (n = 50)Fermales (n = 50)HC month oral arcinogenicity study in CD-1 miceDiet colspan="6">Males (n = 50)Fermales (n = 50)HC month oral arcinogenicity study in CD-1 miceDiet colspan="6">1 100 5000 09 43164834ce (rarOperation of the month oral arcinogenicity study in CD-1 miceDiet colspan="6">1 1 00 05Operation of the month oral arcinogenicity study in CD-1Males (n = 50)Error of the month oral arcinogenicity study in CD-1Males (n = 50)Diet colspan="6">Implement of the month oral arcinogenicity study in CD-1Males (n = 50)Implement of the month oral arcinogenicity study in CD-1Arcinogenicity study in CD-1Males (n = 50)CervicalImplement of the month oral arcinogenicity study in CD-1Implement of the month oral arcinoge	 ↑ inflammation of glandular stomach (M) ↑ incidence of reduced sperm in epididymes (M) Neoplastic findings 																		
arc indicator in the second problemarc inogenicity study in CD-1 miceMales $(n = 50)$ Females $(n = 50)$ HConcentratio (ppm)025010005000Males $(n = 50)$ Females $(n = 50)$ HConcentratio (ppm)025010005000Males $(n = 50)$ Females $(n = 50)$ HConcentratio (ppm)032025010005000Males $(n = 50)$ Females $(n = 50)$ HCConcentratio (ppm)032121000010005000Males (mg/kg050Cervical nasses100100110010000Cervical naise100020 <th <="" colspan="6" td=""></th>																			
accord ppm).accord ppm).Males $(n = 50)$ Females $(n = 50)$ HCOperation of the point of the p																			
oncentratio (ppm)0250100 0500 0025010005000 ma malignant)Me inc ce (ran032126647043164834ce (ranMacroscopic findings (all animals n = 50)Cervical nasses1005ce (ranCervical nasses05200115ce (ranCervical nasses05200115ce (ranCervical 	00 ppm). oplastic h																		
(ppm) 0 250 100 500 0 250 1000 5000 Me inc Bixlozone ntake (mg/kg w/day 0 32 126 647 0 43 164 834 ce (raise) Macroscopic findings (all animals n = 50) Cervical nasses 0 5 2 0 0 1 0 5 2 Lung nodules 0 5 2 0 0 1 1 5 2 Lung nodules 0 5 2 0 0 1 1 5 2 Leiomyoma benign) 0 5 2 0 0 1 0 1 0.4 Genigannation 2 2 0 0 1 0 1 0.4 Genigan 2 2 0 0 0 1 0.4 0 Leiomyoma benign) 2 2 0 0 0 2 0.7 0.7 Genignant) 2 1 3 2 1 0 0 <t< td=""><td colspan="2"></td></t<>																			
Sixlozone ntake (mg/kg w/day 0 32 126 647 0 43 164 834 ce (rail w/day) Macroscopic findings (all animals n = 50) Image: Comparison of the service of th																			
Cervical nasses 1 0 0 5 2 .ung nodules 0 5 2 0 0 1 1 5 .ung nodules 0 5 2 0 0 1 1 5 ncidence of neoplastic findings (all animals n = 50)	take (mg/																		
nasses Image: Image	acroscopi																		
Concidence of neoplastic findings (all animals n = 50) Cervix 1 0 0 1 0.4 Leiomyoma benign) Image: Concidence Image: Concidenc																			
Leiomyoma benign) 1 0 0 1 0.4 (0.0 2.9) 6 incidence 2 0 0 2 2.9 (0.0 2.9) .eiomyosarc oma malignant) 2 0 0 2 0 0 2 0.7 (0.0 5.8) .6 incidence - - 0 0 0 4 0 0 0 0 0 5.8 (0.0 5.8) 0	ng nodul																		
.eiomyoma 1 0 0 1 0.4 0.4 benign) 1 0 0 1 0.4 0.0 2.9 6 incidence 2 0 0 2 0 2 2.9 .eiomyosarc 2 0 0 0 2 0.7 0.0 0 2 0.7 0.0 0.0 5.8 0.6 0 0 4 0.4 0.0 5.8 0.4<	cidence o																		
benign) - - - - (0.0 2.9 2.0 7 (0.0 2.0 2.0 7 (0.0 5.8 2.9 0.7 (0.0 5.8 </td <td>rvix</td>	rvix																		
a incidence 2 0 0 2 0 0 2 0 0 2 0 0 2 0 0 0 2 0 <td< td=""><td>-</td></td<>	-																		
oma malignant) (0.0 % incidence 0 0 0 4 .iver .iver .iver .iver .iver .iver .iver .iver .iver .iver	incidence																		
iver lepatocellula 2 1 3 2 1 0 0 0	iomyosai																		
lepatocellula 2 1 3 2 1 0 0 0	na																		
	na alignant)																		
	na alignant) incidence																		
lepatocellula21400000adenoma	na palignant) incidence ver epatocellu																		

Lung #									
Bronchiolo- alveolar hyperplasia	3	0	1	1	2	0	0	1	
Adenoma, bronchiolo- alveolar	1	2	1	4	2	1	0	0	Males 9.85 (0.0 -
% incidence	2	4	2	8	4	2	0	0	17)
Carcinoma, bronchiolo- alveolar (all)	3	4	3	2	1	1	2	5	
Minimal								2	
Mild				1		1			
Moderate	2	4	3	1			1		
Present					1		1	3	
Unscheduled deaths	2	0	0	1	0	1	1	2	
Scheduled necropsy	1	4	3	1	1	0	1	3	Female s
% incidence	6	8	6	4	2	2	4	10	4.3 (0.0 - 14.3)
1-sided pairwise comparison (p) ^a	N/	Ď	-		-	0.805 2	0.5207	0.0 481	
1-sided trend test (p) ^b					0.	0210	1		
Systemic tumo	our	S							
Sarcoma, histiocytic (regardless of tissue present within)	0	1	0	0	2	0	0	6	
Unscheduled deaths		1			1			2	
Scheduled necropsy		0			1			4	
% incidence	0	2	0	0	4	0	0	12	Female s 6.5

						(0.0 - 18.33)
1-sided pairwise comparison (p)ª	N/D	-	1.000	1.000	0.0 797	
1-sided trend test (p) ^b		0.	0297	1		
Uterus						
Leiomyoma (benign)		0	1	1	0	
Polyp, endometrial stromal (benign)		3	0	1	0	
Granular cell tumour (benign)		1	0	0	0	
eiomyosarc ma malignant)		1	2	0	1	
Sarcoma, endometrial stromal malignant)		1	0	0	0	
Granular cell tumour (malignant)		0	1	0	0	
tal uterine oplastic dings		6	3	2	1	
or males, number number of studies ^a 1-sided pairwise ^b 1-sided trend tes Statistical Significa Common tumour	from carcinogenicity of studies = 23; nun = 22; number of com comparison of 0 ppm an ce: Rare tumour - p<0.005 (trend), p<0 ficant at the defined ned	nber o atrol gr n with d activ p<0.02 0.01 (p	f control oups = 3 active tre ve treatm 25 (trend pairwise)	groups = 3 3) eatment gr ent groups), p<0.05 (34; for f oup	emales,

Bixlozone diet concentration (ppm)	0	250	1000	5000
Bixlozone intake (mg/kg bw/day)	0	43	164	834
Cervix (No. Examined)	48	47	48	50
Leiomyoma	1	0	0	1
Leiomyosarcoma	0	0	0	2
Uterus (No. Examined)	50	50	50	50
Leiomyoma	0	1	1	0
Leiomyosarcoma	1	2	0	1
Combined Cervix and Uterus Leiomyomas	1	1	1	1
% incidence	2	2	2	2
Combined Cervix and Uterus Leiomyosarcomas	1	2	0	3
% incidence	2	4	0	6

10.11.1 Short summary and overall relevance of the provided information on carcinogenicity

Rat chronic toxicity and carcinogenicity study

Bixlozone was administered *ad libitum* in the diet of CrI:CD (SD) rats for 52 and 104 consecutive weeks for the chronic toxicity (10 animals/sex/group) and carcinogenicity groups (50 animals/sex/group) respectively. Doses were 250, 1000, and 5000/3000 ppm (males/females), equating to consumed levels of 10, 41, and 217 mg/kg bw/day respectively for males and 13, 53, and 167 mg/kg bw/day respectively for females. The females were originally treated with 4000 ppm as the highest dose but at Day 49 (week 7), the dose administered was reduced to 3000 ppm based on severe adverse effects (body weight loss approaching 10 %, corresponding lower mean body weight gains by 18-20 % and lower mean food consumption by 9-12 %).

<u>Results</u>

There were no test substance-related deaths during the chronic toxicity or carcinogenicity phases of the study and no statistical difference in the survival between animal groups of the same sex. Test substance-related clinical observations noted throughout the study were limited to the top dose groups, with yellow material on various body surfaces (urogenital area and ventral trunk) in males and dermal atonia and thin body condition in females. A statistically significant adverse lower mean body weights and body weight

gains was observed in both sexes at the top-dose (5000 ppm in males and 3000 ppm in females). Thus, it was concluded that the MTD was reached at the top doses in both sexes.

Non-neoplastic findings

Treatment-related and adverse increases in liver weight were observed at week 52 in males and females at top-dose and at week 104 in males only. A dose-dependent increased incidence in hepatocellular hypertrophy was noted in males from 250 ppm and in females from 1000 ppm, and hepatocellular vacuolation was increased in males from 1000 ppm. Treatment-related increases in serum chemistry parameters indicative of adverse effects in the liver (serum cholesterol, albumin, calcium, total protein), were also observed in the top-dose females but not in males during the chronic toxicity phase; these effects correlated with the other effects seen on the liver in these animals (organ weight changes and histopathology). The findings are also consistent with the toxicokinetics data indicating that females are more systemically exposed to bixlozone than the males. The relevance of those non-neoplastic findings for the classification and labelling of bixlozone for STOT-RE is summarised in Section **Error! Reference source not found.**

The survival rate at termination of the carcinogenicity phase of the study was low; mortality rates ranged from 54-76% across all groups, including controls. No dose-response relationship was identified for mortality rate. The Agency considers the study to have sufficient validity.

Neoplastic findings

There were no increases (relative to controls) in the tumour incidence in any of the main target organs identified in the repeated-dose studies (liver, kidneys) in both sexes; any incidences seen did not show a clear dose-response, were small in magnitude or were also seen in controls. Increased incidences of tumours were only seen for the skin in males and the thyroid in females and are discussed below.

Skin tumours in males

Regarding males, there was a non-statically significant increase in the incidence of skin fibrosarcoma (malignant tumours; 3/60 - 5% vs 0/60 in controls) and fibroma (1/60 - 1.7% vs 0/60 in controls) at the top-dose of 5000 ppm in comparison to the control, with 4 males bearing fibrosarcoma or fibroma in the skin. This is consistent with the increase in the number of top-dose males with palpable masses at the external examination. Fibrosarcoma was considered the cause of death for 2 of these animals (one euthanised *in extremis* on study day 234, and one that died on study day 708). The incidence of fibroma is even below the mean incidence of the laboratory HCD provided, whilst for

fibrosarcoma, the incidence is above the mean incidence value but well within the HCD range. There were no neoplastic findings noted at the lower doses.

The laboratory HCD provided with the study is extensive (derived from 31 male control groups in 21 studies conducted from February 2001 to July 2013). The CLP guidance specifies that the historical data should be contemporary to the study being evaluated (e.g. within a period of up to around 5 years of the study) since it is also known that tumour incidences in control animals can change over time, due to factors such as genetic drift, changes in diagnostic criteria for pathological changes/tumour types, and husbandry factors (Section 3.6.2.3.2.a of the CLP guidance). Therefore, HCD older than this should be used with caution and acknowledgement of its lower relevance and reliability. (RIVM, 2005; Fung et al, 1996; Greim et al, 2003). In this instance, the Agency considers that the HCD provided do not fully comply with the recommendations of the CLP Guidance. Nevertheless, these extended HCD, which can be taken into account in a WoE approach, suggest that skin fibromas are relatively common tumours since the HCD range (1.43 -8.33 %) shows that at least 1 control animal in every study (included in the HCD) is found with such tumours. Regarding fibrosarcomas it is also noted that 1 concurrent control female showed a fibrosarcoma (with none in the treated female groups). Since the HCD range for this finding is 1.43 % - 7.14 % in males (with at least 1 control animal in every study found with such tumours) it suggests that the incidence in the concurrent control male group in this study (0/60) was unusually low.

Considering the biological plausibility of the finding, it is noted that the skin has not been identified as a target organ of toxicity of bixlozone in any other repeated-dose toxicity studies (Section Error! Reference source not found.) and bixlozone was found not to be acutely toxic via the dermal route or a skin irritant (Sections Error! Reference source not found. & Error! Reference source not found. respectively). Moreover, a tissue distribution study showed that bixlozone and/or its metabolites were only found at low levels in the skin after administration of an oral dose of 500 mg/kg bw (Section Error! Reference in males in this study (217 mg/kg bw/day).

In addition, the finding was sex specific, with an increased incidence observed in males only. However, in contrast, the available kinetics show a higher systemic exposure in females (Section **Error! Reference source not found.**), and yet females do not present any tumours up to the top dose (4000 / 3000 ppm). Lastly, no skin tumours were observed in mice.

Overall, considering the sex and species specificity of the response, the low biological plausibility of the finding, the inconsistency between the sex-specificity of the response and the higher systemic exposure in females, and the fact that the incidence was clearly within the range of the extended (2001-2013) HCD supplied, the Agency concludes that

these skin tumours in male rats at the top dose are chance findings, unrelated to treatment.

Thyroid tumours in females

Regarding females, there was a non-statistically significant but dose-related increase in the incidence of follicular cell adenomas (benign tumours; 2/60 - 3.3 % vs 0/60 in controls) and of the follicular cell carcinoma (1/60 - 1.7 % vs 0/60 in controls) in the thyroid gland at the top-dose of 3000 ppm in comparison to controls.

The applicant provided the maximum control numerical and % incidence values derived from studies conducted between 2009 and 2017 i.e. performed around the date of the current study (2014): the maximum numerical incidence was 3 (4.7 % incidence) for follicular cell adenoma and 1 (1.7 %) for follicular cell carcinoma. Thus the thyroid tumour incidences seen in the study in females at the top dose are consistent with the top of the range of the control groups monitored around the time of the study.

Significantly extended HCD (date range 1999 – 2017) were also provided for these tumour findings and show that at the top dose both tumour incidences are slightly higher than the mean % incidence but well within the HCD range. The data do not fully comply with the recommendations of the CLP Guidance (Section 3.6.2.3.2.a of the CLP guidance) however they are from the same laboratory and strain of rat and derived from a reasonable number of studies; thus, they can be considered by the Agency in a WoE approach.

The finding is sex specific, since no relevant or dose-related increase in incidence was observed in males. Moreover, it is noted that the incidence of follicular cell adenoma (benign) in the control male group is similar (3.4 %) to the incidence seen in the top dose female group (3.3 %) and that the incidence of follicular cell carcinoma was for both sexes very low (maximum of 1 case per 50 / 60 rats per group) and clearly not dose-related.

The available kinetics data appear to support the sex specificity of the response since in rats the females show a higher systemic exposure than males (Section **Error! Reference source not found.**). However, a tissue distribution study showed that less than 0.1 % of the administered dose (AD) was found in the thyroid in both sexes following oral administration of bixlozone with the thyroid of males being more exposed than females' following a single high oral dose (500 mg/kg bw) or a repeated low oral dose (5 mg/kg bw/day, 14 days).

Considering the biological plausibility of the finding, it is noted that there were no other associated findings noted in the thyroid (e.g. hyperplasia, hypertrophy) in the study to support the tumorigenic response. Yet, in the 90-day rat study (Section **Error! Reference source not found.**) the thyroid was identified as a target organ of toxicity with histopathology changes seen at doses higher than the top dose tested in this carcinogenicity study, with mild follicular cell hypertrophy observed in both sexes at the top

dose of 505 / 351 mg/kg bw/day only and without associated changes in the thyroid weights. There were no histopathology findings seen at the lower doses of 121 / 150 mg/kg bw/day. Therefore, the biological plausibility of these thyroid tumour findings appears to be low with no clear continuum of neoplastic transformation seen in the thyroids in the relevant rat studies.

Overall, considering the sex specificity of the response, the low incidence of the tumours and the low biological plausibility of the finding, the Agency concludes that the thyroid tumours observed in female rats at the top dose are chance findings unrelated to treatment.

To conclude, there were no treatment-related neoplastic findings identified in this study in the rat.

Mouse carcinogenicity study

In a GLP- and OECD-compliant carcinogenicity study, bixlozone was administered *ad libitum* in the diet of CrI:CD1(ICR) mice (50 animals/sex/group) for 18 months (78 weeks). Administered doses were 250,1000 and 5000 ppm for both sexes equating to consumed levels of 32,126 and 647 mg/kg bw/day respectively, for males and 43, 164 and 834 mg/kg bw/day respectively, for females. Concurrent toxicokinetic groups (20 animals/sex/group) were treated for 365 days (52 weeks). Administered doses were 250, 1000, and 5000 ppm for both sexes equating to consumed levels of 38, 150, 756 mg/kg bw/day, respectively, for males and 50, 202, and 1046 mg/kg bw/day, respectively, for females.

<u>Results</u>

Treatment-related increased incidences of yellow material on the urogenital area and ventral trunk were noted for males in the top-dose group (5000 ppm). These were not considered adverse by the Agency. All other observed signs were common for the age and strain of mice, did not show a clear dose-response and occurred in a small number of animals. The overall survival rates were acceptable in this study across all groups (> 50 % after 18 months) and were not affected by treatment.

Treatment-related and adverse body weight changes were observed in females at the topdose of 5000 ppm (834 mg/kg bw/day), whilst body weights, body weight gains and food consumption were unaffected by bixlozone administration up to the top-dose of 5000 ppm (647 mg/kg bw/day) in males. Consistent with the toxicokinetic findings from the 90-day repeated-dose toxicity study in mice (Section **Error! Reference source not found.**) bixlozone mean concentrations were found to be 2- to 13-fold higher in males than in females on most sampling days at all dose levels.

Non-neoplastic findings

Treatment-related and adverse changes in liver weight were observed in males and females at the top dose of 5000 ppm (647 and 834 mg/kg bw/day in males and females respectively). It was pointed out by the study authors that the highest individual animal liver weights seen, regardless of sex or exposure group, were in mice afflicted with primary tumours (hepatocellular adenoma or carcinoma) or systemic tumours (malignant lymphoma or histiocytic sarcoma). The incidence of these organ weight outliers (since they contain tumours) was noted in the study report to be fairly equally distributed across all exposure groups; therefore, no individual animal organ weights were proposed to be excluded to calculate the mean weights. The approach was considered acceptable by the Agency and the results are thus appropriate for comparison purposes.

A treatment-related and dose-dependent increased incidence in hepatocellular hypertrophy (including glycogen accumulation and single cell necrosis) was noted in males only from 1000 ppm; however, these findings are considered adverse only at top-dose (5000 ppm; 647 mg/kg bw/day) since they correlate with clear and adverse liver weight increases. In addition, slightly higher incidences of reduced epididymal sperm and inflammation of the glandular stomach were seen in males from 1000 ppm, with pelvis dilation of the kidney occurring in males at the top dose of 5000 ppm. Overall, adverse non-neoplastic findings started to occur in males from the mid dose of 1000 ppm (126 mg/kg bw/day).

The relevance of those non-neoplastic findings for the classification and labelling of bixlozone for STOT-RE is summarised in Section **Error! Reference source not found.**

Neoplastic findings

There was no increased incidence of benign or malignant liver tumours in both sexes up to the top-dose however increased incidences of histiocytic sarcoma, cervical and lung tumours were noted and are discussed below.

Histiocytic sarcoma in females

The incidence of systemic histiocytic sarcomas in animals, regardless of tissue present within, was 6/50 (12 %) in top dose females vs 2/50 (4 %) in controls, with no clear dose-response since there was no tumours in the mid and low doses. The increased incidence was not statistically significant and was well within the range of the laboratory HCD provided (0.0 - 18.3 %); the data suggest that the incidence of histiocytic sarcoma in CD-1 female mice is highly variable in controls, with a maximum level of 18.3 %. It is noted that the data do not fully comply with the recommendations of the CLP Guidance (Section 3.6.2.3.2.a of the CLP guidance) however they are from the same laboratory and strain of rat and derived from a reasonable number of studies; thus, they can be considered by the Agency in a WoE approach. This wide data range is also similar to the one reported by P.

Greaves 2012¹ (0 - 15 % for CD-1 mice). According to this review publication, histiocytic sarcoma tumours are uncommon until the age of 12 months, but they increase steeply after 18 months when they are generally more common in females than in males, which is the case in this study. Moreover, the tumour cells are metastatic, and deposits can be found in particular in the lungs and liver. This was also the case in this study, with 3 of the 6 sarcomas being found in the cervix, with metastasis/deposits localised in the lungs and liver.

It is also noted that the biological plausibility of this tumourigenic response is very low as the blood is not a target tissue of toxicity in mice. The finding was sex specific, with an increased incidence observed in females only, whilst in males a single incidence was noted at 250 ppm. This sex-specific response is in contrast to the higher systemic exposure to the test substance seen in males compared to females, further reducing the biological plausibility and possible relation to treatment of the finding. Lastly, no similar findings were seen in the combined chronic / carcinogenicity study in rats even though these tumours can be relatively common in both species. Finally, it is widely believed that this particular neoplasm lacks relevance in the identification of a human carcinogenic hazard. This neoplasm is very rare in humans and no chemical has been shown to increase the incidence of histiocytic sarcoma in the rat and only rarely in the mouse (Greaves P., 2012).

Overall, considering the sex and species specificity of the response, the low biological plausibility of the finding and the relatively high incidence of this tumour observed in control CD-1 mice in accordance with the laboratory extended HCD supplied and the HCD reported in the available literature, the Agency concludes that the incidence in histiocytic sarcomas observed in female mice at the top dose is overall unrelated to treatment with bixlozone.

Cervical tumours in females

Increased incidences of cervical tumours were seen in top dose females: 2 females (4%) showed cervical leiomyosarcoma (malignant tumours) vs none in controls. The laboratory HCD data derived from studies conducted between 2009 and 2017 (i.e performed \pm 5 years around the date (2014) of the current study) with an incidence range of 1.54 - 2.04 % for cervical leiomyosarcoma confirm that the incidence seen at the top dose in this study is higher than the incidence range. In addition, significantly extended laboratory HCD (1999 – 2017) have been provided to help interpret the significance of this response, however they do not fully comply with the recommendations of the CLP Guidance (Section 3.6.2.3.2.a of the CLP guidance). Nevertheless, the data range (.0 – 5.8 %) show that the incidence observed in the study is within the incidence range, but significantly higher than

¹ Peter Greaves. Histopathology of Preclinical Toxicity Studies. Interpretation and Relevance in Drug Safety Studies. Book • 4th Edition • 2012

the mean incidence value of 0.7 %. Thus, both sets of HCD show that this tumour type is relatively rare in the mouse and confirm that the observed incidence of 4 % in this study is generally higher than the historical control incidences.

It is however noted that there was no increased incidence in leiomyosarcoma reported in the uterus which is adjacent to the cervix. The practical difficulties in isolating the cervix from the uterus in the mouse can often result in the uterine corpus and uterine cervix being collected and identified together. Moreover, there are no definitive gross or macroscopic features that clearly demarcate the uterine body (also known as the corpus) from the uterine cervix. Also, there are no histochemical stains, immunohistochemical stains, or ultrastructural features using transmission electron microscopic examination that can differentiate uterine body smooth muscle cells from uterine cervix smooth muscle cells. Further, the neoplastic lesions arising from the uterine body and/or uterine cervix can frequently obliterate the normal architecture of these tissues and involve both of these regions. As a result, it is not possible to determine if a uterine neoplasm arose in the uterine body or uterine cervix based on gross or microscopic features. On that basis, the use of the combined incidence of neoplastic lesions from both tissues (cervix and uterus) to assess the biological relevance of the finding is supported.

The combined uterus/cervix tumour incidences show that a dose-response is no longer apparent for leiomyomas and leiomyosarcomas up to the highest dose tested. Thus, the cervical/uterine tumours reported in females in this study are not considered to be attributable to exposure to bixlozone.

Lung tumours in both sexes

In the top dose females 5/50 animals had lung nodules compared to 0/50 in controls; the finding appears to correlate well microscopically with a higher incidence in bronchioalveolar carcinoma seen in top dose females (5/50 - 10 %) compared to the controls (1/50 - 2 %). The increase is not statistically significant and is well within the range of the laboratory HCD provided (0 - 14.3 %). Although these extended HCD (1999 - 2017) are not compliant with the data requirements, the Agency notes that the range indicates that the incidence of bronchio-alveolar carcinomas is highly variable in controls, rising up to 14.3 %. It is further noted that there were no increases (rather decreases compared to controls) in bronchio-alveolar adenomas in the top dose females.

In top-dose males there were 4/50 bronchio-alveolar adenomas compared to 1/50 in controls, but only 2/50 bronchio-alveolar carcinomas compared to 3/50 in controls. None of the findings showed a clear dose-relationship or was statistically significant compared to the control group.

Moreover, it is noted that the lung has not been identified as a target organ in the mouse and that there is no clear pattern of pre-neoplastic lesions or progression of benign tumours to malignant tumours at the top dose in both sexes. Thus, the biological plausibility of the finding is considered to be low.

Overall, the neoplastic findings observed in the lung in males and females are not considered to be attributable to exposure to bixlozone.

Overall conclusion

Overall, long term oral administration of bixlozone was not carcinogenic in the rat or mouse up to the highest dose tested where general toxicity occurred.

10.11.2 Comparison with the GB CLP criteria

As there is no evidence to suggest that bixlozone causes carcinogenicity in humans, classification with Category 1A is not considered appropriate.

Classification with category 1B is reserved for substances that are presumed to have carcinogenic potential in humans, largely based on animal evidence. There are no clearly significant tumour findings in the studies presented above to support classification with Category 1B.

Substances are placed in Category 2 on the basis of evidence of a carcinogenic effect in animal studies that is not sufficiently convincing to place the substance in Category 1A or 1B. Thus, in order for bixlozone to be classified in category 2, there must be evidence of a treatment-related increase in tumours in the available animal studies.

In animal studies were no neoplastic findings reported in the rat and the mouse that were considered to be attributable to exposure to bixlozone up to the highest dose tested where general toxicity occurred. Consequently, bixlozone should not be classified for carcinogenicity Category 2, based on no evidence of carcinogenicity in both species.

10.11.3 Conclusion on classification and labelling for carcinogenicity

Not classified - conclusive but not sufficient for classification.

10.12 Reproductive toxicity

10.12.1 Adverse effects on sexual function and fertility

A full assessment for the potential adverse effects on sexual function and fertility of bixlozone has been carried out with a GLP and OECD guideline compliant 2-generation reproductive dietary toxicity study in rats. A range-finding reproduction/developmental study is also available. Additional findings on reproductive organs from the short-term and long-term repeated dose toxicity studies are also taken into consideration.

Table 29: Summary of animal studies on adverse effects on sexual function and fertility

Note:

 $\uparrow \downarrow$ denote an increase or decrease in a parameter with respect to the control valueStatistical significance: * $p \le 0.05$, ** $p \le 0.01$ abs. = absoluterel. = relativePND = post-natal dayMethod,TestResults

Method, guideline, deviations if any,	Test substance, dose levels duration of	Results	Reference
species,	exposure		
strain, sex, no/group			
norgroup			
Dose range	Bixlozone	Parents	Anon,
finding	technical,		2016b
study	batch PL14-	<u>3000 ppm (176 mg/kg bw/day M / 172-217-251 mg/kg</u>	
Rats,	0049	<u>bw/day F)</u>	DAR: B.6.6.1.1
Crl:CD(SD), males &	Purity: 96 %	↓ body weight (-35 %, pre-mating) body weight gain & food consumption in F	D.0.0.1.1
females, 10/sex/group	Oral dietary administration	Organ weights	
Not to	Vehicle: acetone	\uparrow liver weight in M (+ 15 % absolute & +19 % relative)	
guideline	acetone	↑ relative kidney weight in M (+11 %)	
GLP: No	0, 300, 1000, 3000 ppm	<u>1000 ppm (56 mg/kg bw/day M / 62-74-86 mg/kg bw/day</u> F) & 300 ppm	
	(0, 150, 500, 1500 ppm	No treatment-related findings.	
	during lactation)	<u>Offspring</u>	
	Equivalent to:	<u>3000 ppm (217-251 mg/kg bw/day)</u>	
	Males: 0, 17, 56 and 176	\downarrow body weights in F (-10%)	
	mg/kg bw/day	Organ weights	
	Females: 0,	\uparrow relative liver weights (+29 % F & +23 % M)	
	20, 62 and 172 mg/kg	↑ absolute liver weights in F (+15 %)	
	bw/day (pre- mating), 0, 22,	<u>1000 ppm (74-86 mg/kg bw/day)</u>	
	74 and 217 mg/kg bw/day	Organ weights	
	(gestation) &		

	0, 23, 86 and	\uparrow relative liver weights in F (+15 %)	
	251 mg/kg bw/day	↑ absolute liver weights in F (+15%)	
	(lactation)	300 ppm (22-23 <u>mg/kg bw/day</u>)	
		No treatment-related findings.	
Two-	Bixlozone	Parental (systemic) toxicity	Anon,
generation	technical,		2016c
reproductive	batch PL14-	<u>Fogeneration</u>	
toxicity	0049		DAR:
		There were no treatment related deaths or clinical signs of	B.6.6.1.2
Rats,	Purity: 96 %	toxicity	
Crl:CD(SD),		2000 mmm (440 / 407 mm/km huu/dou M / E)	
males &	Vehicle:	<u>3000 ppm (140 / 187 mg/kg bw/day M / F)</u>	
females,	acetone	↓ body-weight gains in F (-14 %** days 0-70)	
25/sex/group	Oral dietary		
GLP	administration	\downarrow mean body weights in F (-9 %** at gestation)	
Guideline:	0, 150, 750 &	Organ weights	
OECD 416 (2001)	3000 ppm (reduced to 0,	↑ absolute liver weights: +13 %** (M) & +12%** (F)	
Deviations:	75, 375 & 1500 ppm	↑ relative liver weights: +19 %** (M) & +18 %** (F)	
none	during lactation)	\uparrow relative kidney weights: +13 %** (M) & +10 %** (F)	
	Equivalent to	Histopathology	
	(most conservative):	Hepatocellular hypertrophy in F	
	Males: 0, 7, 34 & 140 mg/kg	\uparrow mononuclear cell infiltration (chronic inflammation) in the prostate	
	bw/day	750 (24 / 40 malka buldou M / E) 8 450 mm /7 / 40 mm	
		750 (34 / 49 mg/kg bw/day M / F) & 150 ppm (7 / 10 mg/kg bw/day M / F)	
	Females: 0,		
	10, 49 & 187 mg/kg bw/day	No treatment-related findings	
	Actual mean	F1 generation	
	test substance intakes are	<u>3000 ppm (140 / 187 mg/kg bw/day M / F)</u>	
	summarised in Table 30	\downarrow body-weight gains in M** & F	
	below.	\downarrow body weights in M** & F*	
		Organ weights	
		↑ absolute liver weights in F (+13 %**)	

↑ relative liver weights: +14 %** (M) & +21 %** (F)
\uparrow relative kidney weights: +13 %** (M) & +10 %** (F)
Histopathology
Hepatocellular hypertrophy in F
\uparrow mononuclear cell infiltration (chronic inflammation) in the prostate*
750 (34 / 49 mg/kg bw/day M / F) & 150 ppm (7 / 10 mg/kg bw/day M / F)
No treatment-related findings.
Reproductive toxicity
No specific treatment-related adverse effects.
Offspring toxicity
<u>3000 ppm (187 mg/kg bw/day)</u>
F1 pups
↑ relative liver weights: +18 % (M)*
F2 pups
\downarrow mean body weights PND 14 (-8 %)
750 ppm (49 mg/kg bw/day) & 150 ppm (10 mg/kg bw/day)
No treatment-related findings.

10.12.2 Short summary and overall relevance of the provided information on adverse effects on sexual function and fertility

Range-finding reproduction/developmental study

Groups of 10 CrI:CD(SD) rats /sex / dose were administered dietary concentrations of bixlozone at 0, 300, 1000 and 3000 ppm. In males this equated to test substance intakes of 0, 17, 56 and 176 mg/kg bw/day. In females this equated to test substance intakes of 0, 20, 62 and 172 mg/kg bw/day during the pre-mating period and 0, 22, 74 and 217 mg/kg bw/day during gestation; doses were halved during lactation to maintain consistent dose levels during anticipated increases in food consumption, and equated to 0, 23, 86 and 251 mg/kg bw/day. Four pups/sex/litter were randomly selected on the Post-Natal Day 4 (PND

4) to be exposed during lactation to milk from dams receiving the reduced test substance intakes (0, 150, 500 and 1500 ppm) and for a further 7 days following weaning to the original target concentrations (0, 300, 1000 and 3000 ppm).

Parental toxicity

There were no deaths or treatment-related signs of toxicity. In parental animals, reductions in food consumption, body weight and body weight gain were observed in females at the top dose of 3000 ppm. In males there were no statistically significant, treatment-related changes in the mean body weights or body weight gain at any dose tested; however increases in relative liver weights > 15 % compared to controls accompanied by histopathological findings (hepatocellular hypertrophy) and adverse kidney weight changes were noted at the top dose. No adverse effects were observed at the lower doses in both sexes.

Reproductive toxicity

There was no adverse effect on male or female fertility, mating, copulation, and conception indices, the numbers of days between pairing and coitus at any dose tested and compared to the controls; neither was there any effect on mean gestation duration or parturition performance (mean gestation lengths were 21.8, 21.6 and 21.5 days for the 300, 1000 & 3000 ppm groups respectively, compared with 21.8 days in the concurrent control group). The number of implantation sites was similar across the control and all treated groups.

Offspring toxicity

Bixlozone had no effect on the mean number of pups born, litter size, sex ratio or pup survival. All pups selected for rearing survived to the scheduled necropsy. The only clinical signs noted were a short stature in two animals (one male at 3000 ppm and one female at 1000 ppm) and a missing tail portion of one female at 3000 ppm; these isolated incidences are unlikely to be treatment-related.

Consistent with the toxicity observed in the parent animals, body weights and body-weight gain of pups in were affected by treatment with bixlozone at the top dose; there was no corresponding effect on food consumption. There were no treatment-related macroscopic findings in both sexes but there were adverse increases in liver weights in offspring from 1000 ppm. No adverse effects were observed at the lower doses.

Conclusion

In conclusion, in this reproductive range-finding study in which bixlozone was administered in the diet at 0, 300, 1000 and 3000 ppm, there were no adverse effects on reproductive parameters. Parental treatment-related and adverse effects were observed at 3000 ppm comprising lower mean body weights and increased liver and kidney weights. In offspring, adverse increased liver weights were observed in females from 1000 ppm and in males at the top dose. In addition, lower pup body weights were noted at the top-dose of 3000 ppm.

Two-generation study (main study)

The potential for bixlozone to adversely affect fertility and reproduction was investigated in a 2-generation reproductive toxicity study in the rat. Groups of 25 male and female CrI:CD(SD) rats were administered 0, 150, 750 or 3000 ppm bixlozone in the diet for 2 successive generations. Actual mean test substance intakes for males and females during pre-mating, mating, gestation and lactation for the F_0 and F_1 generations are summarised in Table 30 below. Parental (F_0) animals were administered the test item for 70 days before mating. Both F_0 and F_1 males continued to receive the test substance throughout mating and females throughout mating, gestation and lactation and lactation before termination and necropsy following weaning of their respective litters. Litters received the same diets as their parents following weaning.

Table 30: Test substance intakes for the two-generation rat study

Bold values are the most conservative doses to consider when setting the NOAELs and LOAELs

* The test substance concentration for the F0 and F1 generation females was halved during lactation to account for expected increases in food consumption during this period

Test substance consumption (mg/kg bw/day)						
Phase of study, generation	150 ppm	750 ppm	3000ppm			
		Males				
Pre-mating (F ₀ males)	10	49	200			
Pre-mating (F1 males)	12	60	238			
Post-mating (F₀ males)	7	34	141			
Post-mating (F ₁ males)	7	34	140			
Mean (males)	9	44	180			
	F	emales*				

Pre-mating (F₀ females)	11	53	209
Pre-mating (F ₁ females)	12	59	241
Gestation (F₀ females)	10	50	203
Gestation (F ₁ females)	10	49	187
Lactation (F ₀ females)	12	62	261
Lactation (F ₁ females)	12	59	255
Mean (females)	11	55	226

Parental toxicity (F₀ & F₁)

There were no treatment-related deaths found for the F_0 generation; 2 deaths occurred in the control and low-dose female groups only, they were not attributable to treatment with bixlozone. In the F_1 generation, a female of the mid-dose group was also found dead, but this was attributed to a mechanical head injury.

Observed clinical signs at F_0 and F_1 comprising hair loss on the forelimbs and facial area, decreased defecation and red material around the nose, occurred sporadically in all groups (including the control group) and hence were not considered treatment-related.

In relation to general toxicity in parental animals, adequate toxicity was achieved and in line with the findings of the repeated-dose toxicity studies (Section **Error! Reference source not found.**), this was characterised by reductions in food consumption, body weight and body weight gain and increases in relative liver weights > 15 % compared to controls accompanied by histopathological findings (hepatocellular hypertrophy) at the top dose of 140 / 187 mg/kg bw/day (lowest dose males / females) in both sexes and both generations. Adverse effects on kidneys (increase in relative kidney weights in both) were also noted at the top dose in both generations. No adverse effects were observed at the lower dose of 34 / 49 mg/kg bw/day.

Reproductive parameters

Bixlozone had no effect on male or female fertility or reproductive performance; gestation duration and spermatogenic endpoints were also unaffected by treatment up to the top-dose of 140 / 187 mg/kg bw/day (males / females) at which general / systemic toxicity occurred. In addition, examination of the reproductive organs did not reveal any treatment-related changes except for mononuclear cell infiltration (chronic inflammation) in the prostate which was evident in the top-dose males of both generations. In the absence of a functional effect on fertility or reproductive performance, this finding is considered of minimal toxicological significance. There was also no effect on litter size, sex ratio or pup survival up to the highest dose tested in the study.

It was noted that the age of attainment of vaginal opening of F1 pups was statistically significantly greater at 3000 ppm compared to the corresponding control (33.6 days compared with 31.7 days). The mean body weights of the female pups reached at the age of attainment were unaffected by treatment with bixlozone in all groups, which indicates that the delay in vaginal patency was the consequence of reduced pup body weight development, because, once the pup body weight was similar to that of the controls, vaginal opening was attained. Moreover the values seen at the top-dose were well within the laboratory HCD provided, although these cover a period of 10 years. In addition, there were no notable effects on other developmental landmarks and these females went on to mate successfully and produce the F2 generation. Overall, the Agency considers this finding the secondary consequence of reduced post-weaning female pup body weight development and not a specific reproductive effect of bixlozone.

Offspring toxicity (F1 & F2)

Consistent with the toxicity observed in the parental generations, body weights and bodyweight gain of pups in the F₂ generation (but not in the F₁ generation) were affected by treatment with bixlozone at the top dose of 140 mg/kg bw/day, whilst liver weights were found to be adversely increased in male pups of the F₁ generation. No adverse effects were observed at the lower dose of 34 /49 mg/kg bw/day in both generations.

Conclusion

In conclusion, in this 2-generation reproductive toxicity study bixlozone was administered in the diet at 0, 150, 750 or 3000 ppm; there were no adverse effects on reproductive parameters. Parental treatment-related and adverse effects were observed at the top-dose of 3000 ppm comprising lower mean body weights and increased liver and kidney weights which correlated with histopathology findings for the liver. In addition, mononuclear cell infiltration (chronic inflammation) in the prostate was observed in both generations. The administration of bixlozone did not have a specific effect on fertility, reproduction, pregnancy outcome or pup survival up to the top-dose tested of 3000 ppm. Consistent with the parental toxicity, body weights and body weight gain of pups in the F₂ generation were affected by treatment with bixlozone at the top-dose, whilst relative liver weights were adversely increased in male pups of the F1 generation.

Additional findings on reproductive organs from repeat dose toxicity studies

A slightly higher incidence of reduced epididymal sperm was seen in males from 126 mg/kg bw/day at terminal sacrifice in the 18-month mouse carcinogenicity study (Section **Error! Reference source not found.**). No other reproductive organs were affected. No such findings were seen in the 90-day mouse study up to the top dose of 930 mg/kg bw/day. It is most likely that these mild and isolated changes occurring during the reproductive senescence of the male mouse are of minimal toxicological significance and of no relevance to the reproductive performance of the mouse. An increase in the number of malignant cervical tumours was also seen in females at the top dose of 834 mg/kg bw/day at terminal sacrifice in the 18-month mouse carcinogenicity study (see carcinogenicity section). Again, these findings, occurring during the reproductive performance of the mouse.

In addition, reductions in prostate weight with associated immaturity were seen in the dog in the 90-day study from 300 mg/kg bw/day, but not up to 500 mg/kg bw/day in the 1-year study (Section **Error! Reference source not found.**). On this basis, these prostate findings are considered to be of minimal toxicological significance and of no relevance to the reproductive performance of the dog.

10.12.3 Comparison with the GB CLP criteria

Bixlozone has been tested in a modern guideline and GLP compliant 2-generation study in CrI:CD(SD) rats. Further information has also been provided by a preliminary dose range-finding study performed with the same strain of rats.

Bixlozone is a new active substance thus there is limited human data to rely on; however there is no evidence that bixlozone is a reproductive toxicant in humans, therefore classification in 1A is not appropriate.

Classification in Category 2 is reserved for substances where there is some evidence from human or experimental animals of an adverse effect on sexual function and fertility. Such effects should be observed in the absence of other toxic effects or if occurring together with other toxic effects the adverse effect is considered not to be a secondary non-specific consequence of other toxic effects. On the basis that there is no evidence that bixlozone causes any specific adverse effects to sexual function or fertility up to the top dose tested where parental toxicity occurs, it should not be classified in this category. Therefore no classification for this endpoint is warranted for bixlozone.

10.12.4 Adverse effects on development

The developmental toxicity of bixlozone has been investigated in GLP and guideline compliant gavage pre-natal developmental toxicity studies, conducted in the rat and rabbit. Additional information on the developmental toxicity potential of bixlozone can be extracted from the rat 2-generation study and has been taken into consideration in this summary.

Method, guideline, deviations if any, species, strain, sex, no/group	Test substance, dose levels duration of exposure	Results	Reference
Pre-natal developmental toxicity study Rats, CrI:CD(SD), females, 25/group Guideline: OECD 414 (2001) Deviations: None of significance <i>Acceptable</i>	Bixlozone technical, batch PL14-0049 Purity: 96% Vehicle: 0.5% (w/v) carboxymethylcellulose (CMC) in 5% tween® 80 Oral gavage administration 0, 75, 225 & 550 mg/kg bw/day Dose volume: 10 mL/kg	Maternal toxicity 550 mg/kg bw/day Clinical signs: red, yellow and/or clear material on various body surfaces Early ↓ body-weight gain: -90 % (GD 6-9)** ↓ body-weight gain: -16 % (GD 6-19)** ↓ body weight: -6 % (GD 20)** ↓ net body-weight gain: -29.5 %** ↓ net body weight: -7 %** ↓ food consumption: -11.5 % (GD 6-20)** Organ weights ↑ liver weight: +29 %** (absolute) & +38 %** (relative) Histopathology Hepatocellular hypertrophy: 7/25 (mild) & 18/25 (moderate) 225 mg/kg bw/day Clinical signs: red, yellow and/or clear material	Anon, 2016e DAR: B.6.6.2.2
		Clinical signs: red, yellow and/or clear material on various body surfaces	

Table 31: Summary of animal studies on adverse effects on development

Method, guideline, deviations if any, species, strain, sex, no/group	Test substance, dose levels duration of exposure	Results	Reference
Dose-range	Bixlozone technical,	Early ↓ body-weight gain: -40 % (GD 6-9)* ↓ food consumption: -8 % (GD 6-20)* <u>75 mg/kg bw/day</u> No adverse effects <u>Developmental toxicity</u> No treatment-related findings. <u>Maternal toxicity</u>	Anon,
finding pre- natal developmental toxicity study Rats, CrI:CD(SD), females, 8/group Not to guideline GLP: No Supplementary only	 batch PL14-0049 Purity: 96 % Vehicle: 0.5 % (w/v) carboxymethylcellulose (CMC) in 5% tween® 80 Oral gavage administration 0, 25, 75, 225 and 675 mg/kg bw/day Dose volume: 10 mL/kg 	675 mg/kg bw/day One death (sacrificed on GD11) ↓ body weight (- 6.9 to 8.5 %) ↓ body-weight gain (-36 %) ↓ net body weight (-7.5 %) ↓ net body weight gain (-45 %) ↓ food consumption (-18 %) Organ weights ↑ liver weight: 64 % (relative) & 52 % (absolute) 225 mg/kg bw/day Organ weights ↑ liver weight: 17 % (absolute & relative) 75 mg/kg bw/day & 25 mg/kg bw/day No treatment-related findings Developmental toxicity	2016d DAR: B.6.6.2.1

Method, guideline, deviations if any, species, strain, sex, no/group	Test substance, dose levels duration of exposure	Results	Reference
		675 mg/kg bw/day	
		\downarrow foetal body-weights (- 8 % M & F)	
Pre-natal	Bixlozone technical,	Maternal toxicity	Anon,
developmental	batch PL14-0049		2015a
toxicity study		There were no treatment-related deaths.	
,,	Purity: 96 %		DAR:
Rabbits, New		400 mg/kg bw/day	B.6.6.2.4
Zealand White	Vehicle:		
(Hra:(NZW)SPF),	carboxymethylcellulose	↓ defecation	
females,	(CMC) in 5% tween® 80		
25/group		\downarrow body-weight gain -32 % (GD 13-20)	
	Oral gavage		
Guideline: OECD	administration	\downarrow food consumption -18 % (GD 13-20)	
414 (2001)			
	0, 25, 75, 200 & 400	<u>25, 75, 200 mg/kg bw/day</u>	
Deviations: None	mg/kg bw/day	No treatment-related findings.	
		no treatment-related indings.	
GLP		Developmental toxicity	
Acceptable		No treatment-related findings.	
Dose-range	Bixlozone technical,	Maternal toxicity	Anon,
finding pre-	batch PL14-0049		2014a
natal		<u>1000 mg/kg bw/day</u>	
developmental	Purity: 96 %		DAR:
toxicity study		There were two deaths on GD 17 & 19; all	B.6.6.2.3
	Vehicle:	remaining animals were sacrificed on GD 19	
Rabbits, New	carboxymethylcellulose	due to severe toxicity	
Zealand White	(CMC) in 5% tween® 80		
(Hra:(NZW)SPF),		↓ body weight -13 %	
females, 6/group	Oral gavage		
	administration	\downarrow food consumption -85 %	
Not to guideline	0 400 050 750 0 4000	750 ma/ka hw/day	
	0, 100, 350, 750 & 1000	750 mg/kg bw/day	
GLP: No	mg/kg bw/day	There were two deaths; all remaining animals	
Cumplanterter		were sacrificed on GD 23 due to severe toxicity	
Supplementary			
only		↓ body weight -16 %	

Method, guideline, deviations if any, species, strain, sex, no/group	Test substance, dose levels duration of exposure	Results	Reference
		\downarrow food consumption -86 %	
		<u>350 mg/kg bw/day</u>	
		↓ body-weight gain -27 % (not statistically significant)	
		↓ net body-weight gain	
		\downarrow food consumption -13 %	
		<u>100 mg/kg bw/day</u>	
		↓ body-weight gain -42 % (not statistically significant)	
		↓ net body-weight gain	
		\downarrow food consumption -19 %	
		Developmental toxicity	
		No treatment-related findings.	

10.12.5 Short summary and overall relevance of the provided information on adverse effects on development

Rat studies

In a developmental range-finding study (Anon, 2016d), administration of bixlozone to rats throughout gestation resulted in maternal toxicity at the highest dose tested (675 mg/kg bw/day), characterised by 1 death, body weight loss, reduced body weight gain and increases in absolute and relative liver weights. Initial body weight loss and increased liver weight were also observed at 225 mg/kg bw/day. No external or visceral malformations or variations that were attributable to treatment with bixlozone were apparent but foetal weight was reduced at the top dose.

Based on the findings of this study, doses of 75, 225 and 550 mg/kg bw/day were selected for the main pre-natal developmental toxicity study (Anon, 2016e). Female CrI:CD(SD) rats (25/group) were administered bixlozone technical as a 10 mL/kg gavage dose, once

daily throughout gestation days (GD) 6-19; the concurrent control group received the same volume of vehicle (0.5 % [w/v] CMC in 5 % Tween[®] 80) under identical experimental conditions.

Parental toxicity

In the rat developmental toxicity study, maternal toxicity was noted from 225 mg/kg bw/day and was characterised by a higher incidence of clinical findings (red, yellow and/or clear material on various body surfaces), reduced food consumption and a corresponding reduction in body weight and body weight gain. Reductions in body weight gain were most marked during the first 3 days of dosing. In addition, an adverse increase in liver weight with histopathological correlate was noted at the top dose.

GD 20 laparohysterectomy data

Bixlozone had no effect on intrauterine growth and survival according to any of the parameters measured (post-implantation loss, live litter size, mean foetal body-weights and foetal sex ratios). Furthermore, the mean number of corpora lutea and implantation sites and the mean litter proportions of pre-implantation losses were similar across all treated and control groups.

Foetal toxicity

The number of foetuses (litter) available for morphological examination were 391 (25), 390 (25), 384 (25) and 380 (24) in the control, 75, 225 and 550 mg/kg bw/d dose groups respectively. At these same respective dose-groups malformations were observed at a rate of 2 (2), 3 (2), 2(2) and 2 (2) foetuses (litter).

Some skeletal variations were apparent, but these were either not dose-related or only marginally increased above controls and thus considered of no toxicological significance (Table 32). An increased incidence of 14th rudimentary rib and sternebrae malaligned (slight or moderate) was observed at the top-dose. However these are common variations and they did not show a dose-related response. Moreover the increases were not statistically significant compared to the controls and occurred in the presence of significant maternal toxicity. Overall they are not considered to be of toxicological significance by the Agency.

In conclusion no evidence of developmental toxicity was observed in the rat at any dose tested and up to doses causing clear maternal toxicity.

Dose (mg/kg bw/day)	0	75	225	550			
Total foetuses examined	391	390	384	380			
Total litters examined	25	25	25	24			
Detailed foetus (litter) incidence - Visceral variations (absolute number)							
Renal papilla(e) not developed and/or distended ureter(s)	2 (1)	3 (3)	0	0			
Liver- accessory lobule(s)	2 (1)	1 (1)	0	0			
Kidney(s)- small	0	2 (1)	0	0			
Haemorrhagic ring around the iris	1 (1)	1 (1)	0	0			
Detailed foetus (litter) incidence - Skeletal	variations (al	bsolute numb	per)				
Cervical centrum #1 ossified	49 (16)	66 (15)	50 (19)	51 (18			
Sternebra(e) #5 and/or #6 unossified	54 (17)	55 (21)	50 (18)	51 (15			
Hyoid unossified	6 (3)	8 (5)	3 (3)	3 (3)			
14 th rudimentary rib(s)	31 (8)	14 (11)	28 (13)	49 (17			
% litter incidence	7.7	3.6	7.2	13.0			
Sternebra(e) malaligned (slight or moderate)	3 (2)	1 (1)	2 (2)	6 (5)			
% litter incidence	0.8	0.2	0.5	1.5			
7 th cervical rib(s)	2 (2)	3 (3)	5 (2)	2 (2)			
Sternebra(e) #1,#2,#3 and/or #4 unossified	3 (3)	5 (4)	1 (1)	3 (2)			
Reduced ossification of the vertebral arches	0	3 (2)	1 (1)	3 (3)			
Reduced ossification of the skull	0	6 (3)	0	0			
Bent rib(s)	0	5 (3)	4 (2)	3 (2)			
Pubis unossified	1 (1)	0	0	2 (2)			
27 presacral vertebrae	0	0	0	1 (1)			
Reduced ossification of the 13th rib(s)	2 (2)	1 (1)	1 (1)	0			
Spherical enlargement of the rib(s)	0	0	1 (1)	0			
Ischium unossified	0	0	0	1 (1)			
Litter incidence (%) of visceral Variations	1.3	1.9	0	0			
Litter incidence (%) of skeletal Variations	35.1	35.2	37.7	34.9			
Total litter incidence for variations	36.1	36.4	37.7	34.9			

Table 32: Summary of variations from the rat developmental toxicity study

Rabbit studies

In a range-finding study (Anon, 2014a), administration of bixlozone to New Zealand white rabbits caused severe maternal toxicity at the top-doses of 1000 and 750 mg/kg bw/day that resulted in the early termination of these animals. Maternal toxicity was also evident at the lower doses of 100 and 350 mg/kg bw/day characterised by lower body-weight gain, net body-weight losses, reduced food consumption and reduced defecation. In contrast to previous studies in rats, lower absolute and relative liver weights were noted at 100 and 350 mg/kg bw/day (possibly a consequence of reduced food consumption at these doses).

Owing to the early sacrifice of the rabbits at the higher doses, no liver weights or caesarean section data was evaluated at these doses. There was no indication of developmental toxicity at any dose.

Based on the results of this study, doses of 25, 75, 200 and 400 mg/kg bw/day were selected for a main developmental toxicity study in rabbits (Anon, 2015a). In this GLP and guideline-compliant study, groups of 25 female New Zealand White rabbits were administered bixlozone with daily doses at 0, 25, 75, 200 and 400 mg/kg bw/day from gestation day (GD) 7 to GD 28 by gavage. The vehicle used was 0.5% [w/v] carboxymethylcellulose (CMC) in 5% Tween® 80 whilst the dosage volume for all groups was 5 mL/kg.

Parental toxicity

A reduction in food consumption during the second week of dosing (GD 13-20), with a corresponding reduction in body weight gain and decrease in defecation was noted in dams at the highest dose of 400 mg/kg bw/day. No adverse maternal effects were noted at lower doses.

GD 29 laparohysterectomy data

Intrauterine growth and survival were unaffected by test substance administration at all dosage levels. Parameters evaluated included post implantation loss, live litter size, mean foetal body weights, and foetal sex ratios. Mean numbers of corpora lutea and implantation sites and the mean litter proportions of pre-implantation loss were similar across all groups. Differences from the control group were slight and not statistically significant.

Foetal toxicity

The numbers of foetuses (litters) available for morphological evaluation were 212(23), 211(24), 221(25), 199(22), and 210(24) in the control, 25, 75, 200, and 400 mg/kg bw/day groups, respectively. Malformations were observed in 5(4), 3(2), 5(4), 3(2), and 2(2) foetuses (litters) in these same respective groups and were considered by the Agency to be spontaneous in origin.

There were no external malformations (either treatment-related or otherwise) at any dose. No treatment-related soft tissue malformations were observed; however several spurious soft tissue malformations were noted and are summarised in Table 33. These soft tissue malformations were also present at a similar frequency in the control group; furthermore none of these incidences occurred in the high-dose group; hence the Agency considers that the effects were not related to treatment with bixlozone. There were no treatmentrelated skeletal malformations. All of these malformations occurred at no greater incidence than the concurrent control group and did not show a clear dose-response. No treatment-related soft tissue (visceral) variations were noted; variations that occurred in all groups included accessory spleen(s), major blood vessel variation (no brachiocephalic trunk), extra papillary muscle in the heart or only 2 papillary muscles, retrocaval ureter, absent, small, or bilobed gallbladder, small or pale spleen, pale liver, accessory liver lobule, and/or haemorrhagic ring around the iris. These visceral variations did not occur in a dose-related manner, were noted similarly in the concurrent control group, and were therefore considered to be unrelated to treatment by the Agency.

No treatment-related skeletal variations were noted; findings across all groups included 13th full and/or rudimentary ribs, sternebrae (unossified, malaligned or misshapen), presacral vertebrae, extra ossification of sternebra, 7th cervical ribs or sternebra, bent hyoid arches, accessory skull bones, vertebral centra not fully ossified, reduced ossification of the skull and a hole in the xyphoid cartilage. These findings did not occur in a dose-related manner and were noted similarly in the concurrent control group; therefore, none of these were considered to be treatment-related by the Agency. The incidence of sternebrae with thread-like attachment was increased (3 in 3 litters vs 0 in controls) at the top dose. However, considering the very low incidence and the isolated nature of the observation (with no clear pattern of skeletal variations), this is most likely a chance finding unrelated to treatment with bixlozone.

A distended, gas-filled stomach was observed in one foetus of the 400 mg/kg bw/day group and cystic oviducts were observed for one foetus in the control group and two foetuses in the 75 mg/kg bw/day group. These findings were not classified as either malformations or variations and hence were not included in the summary tables. In any case, they were not treatment-related (they occurred infrequently, at similar frequencies in the control group, and/or in a manner that was not dose-related).

Overall, there was no treatment-related developmental toxicity noted in the rabbit up to the highest dose tested.

Table 33: Summary of the malformations found in the rabbit developmental toxicitystudy:

Dose (mg/kg bw/day)	0	25	75	200	400	
Total foetuses examined	212	211	221	199	210	
Total litters examined	23	24	25	22	24	
	Visceral mal	formation				
Foetal incidence	3	3	3	1	0	
Litter incidence	3	2	2	1	0	
Detailed foetus (litter) inciden	ce - Viscera	al malformati	on		
Persistent truncus arteriosus	0	1(1)	1(1)	1(1)	0	
Interventricular septal defects	0	1(1)	1(1)	1 (1)	0	
Lungs – lobular agenesis	2(2)	2(2)	2(1)	0	0	
Vena cava – malpositioned	1(1)	0	0	0	0	
	Skeletal mal	formation				
Foetal incidence	3	0	2	3	2	
Litter incidence	3	0	2	2	2	
Detailed foetus (litter) inciden	ce - Skeleta	al malformati	on		
Sternebrae fused	1 (1)	0	0	0	1	
Vertebral anomaly with or without associated rib anomaly	1 (1)	0	0	2 (1)	1 (1)	
Vertebral central anomaly	1(1)	0	0	0	0	
Severe maligned sternebrae	0	0	2(2)	1(1)	0	
Costal cartilage anomaly	0	0	1(1)	0	0	
Total malformations						
Total Foetal incidence	5	3	5	3	2	
Total Litter incidence	4	2	4	2	2	

Table 34: Summary of variations from the rabbit developmental toxicity study

Dose (mg/kg bw/day)	0	25	75	200	4
Total foetuses examined	212	211	221	199	210
Total litters examined	23	24	25	22	24
Detailed foetus (litter) incider	ice - Visceral	variations (al	bsolute numb	per)	
Accessory spleen(s)	31 (14)	28 (15)	42 (18)	19 (12)	29 (14)
Heart- extra papillary muscle	9 (7)	12 (7)	7 (5)	12 (9)	7 (6)
Major blood vessel variation	7 (6)	24 (10)	8 (5)	7 (5)	15 (8)
Retrocaval ureter	1 (1)	0	4 (3)	6 (5)	1 (1)
Spleen- pale	1 (1)	2 (1)	0	0	0
Gallbladder - absent or small	0	0	0	1 (1)	0

Dose (mg/kg bw/day)	0	25	75	200	4
Total foetuses examined	212	211	221	199	210
Total litters examined	23	24	25	22	24
Heart - only two papillary muscles present	1 (1)	1 (1)	0	1 (1)	3 (1)
% per litter	0.5 ± 2.32	0.4 ± 1.86	0.0 ± 0.00	0.4 ± 1.94	1.4 ± 6.80
Liver - accessory lobule(s)	1 (1)	1 (1)	0	0	2 (1)
Spleen - small	0	0	0	1 (1)	0
Liver- pale	0	0	8 (1)	1 (1)	0
Haemorrhagic ring around the iris	1 (1)	2 (2)	0	0	1 (1)
Gallbladder- bilobed	0	0	0	1 (1)	0
Detailed foetus (litter) inciden	ice - skeletal '	variations (at	bsolute numb	er)	<u></u>
13th rudimentary rib(s)	36 (17)	37 (19)	25 (16)	43 (18)	31 (19)
Sternebra(e) #5 and/or #6 unossified	24 (12)	28 (13)	16 (10)	18 (7)	25 (10)
13th full rib(s)	50 (19)	90 (22)	84 (18)	78 (16)	65 (17)
% per litter	25.7 ± 23.4	42.6 ± 24.7	37.5 ± 30.0	37.1 ± 27.5	33.5 ± 31.7
Accessory skull bone(s)	1 (1)	0	0	1 (1)	0
Extra site of ossification anterior to sternebra #1	6 (4)	3 (3)	3 (2)	5 (3)	2 (2)
Sternebrae with thread-like attachment	0	0	1 (1)	0	3 (3)
% per litter	0.0 ± 0.00	0.0 ± 0.00	0.4 ± 1.8	0.0 ± 0.00	1.4 ± 3.8
27 presacral vertebrae	4 (2)	10 (6)	14 (12)	17 (7)	8 (7)
Hyoid arch(es) bent	2 (2)	1 (1)	3 (3)	5 (4)	1 (1)
7th cervical rib(s)	1 91)	0	10 (7)	7 (4)	0

Dose (mg/kg bw/day)	0	25	75	200	4	
Total foetuses examined	212	211	221	199	210	
Total litters examined	23	24	25	22	24	
7th sternebra	1 (1)	0	1 (1)	0	0	
25 presacral vertebrae	1 (1)	0	2 (2)	0	0	
Sternebra(e) malaligned(slight or moderate)	2 (2)	0	5 (5)	3 (3)	0	
Vertebral centra not fully ossified	0	0	1 (1)	2 (2)	0	
Reduced ossification of the skull	0	0	3 (2)	0	0	
Xyphoid cartilage- hole	0	0	0	1 (1)	0	
Sternebra(e)- misshapen	0	0	0	1 (1)	0	
Total Variations						
Litter incidence (%) of visceral Variations	23.2	30.5	30.6	21.2	27.7	
Litter incidence (%) of skeletal Variations	54.4	67.2	60.5	70.3	58.3	

Other studies

In the rat 2-generation study (Anon, 2016c), Section **Error! Reference source not found.**) there were no effects of treatment on pup survival, sex ratio, developmental landmarks and preputial separation up to the top dose of 140 mg/kg bw/day at which parental and offspring toxicity occurred.

10.12.6 Comparison with the GB CLP criteria

Bixlozone has been tested in guideline prenatal developmental studies in rats and rabbits. A specific effect on the development of the unborn fetus was not observed in either species.

Classification in Category 1A for effects on development is required when a substance is a known human reproductive toxicant. Bixlozone is a new active substance thus there is limited human data to rely on. Nevertheless, as there is no evidence to suggest that

bixlozone causes reproductive toxicity in humans, classification with Category 1A is thus not necessary.

In order to be classified in Category 1B, there must be clear evidence from animal studies of an adverse effect on development occurring in the absence of other toxic effects. As there was no clear evidence to suggest bixlozone should be a presumed human reproductive toxicant, classification in this category is not appropriate.

Classification in Category 2 is required if a substance is considered a suspected human reproductive toxicant. In guideline and GLP-compliant studies conducted in the rat (Anon, 2016e) and the rabbit (Anon, 2015a) there was no developmental toxicity noted up to the highest doses tested.

Overall, it can be concluded that bixlozone is not a developmental toxicant. Classification for this endpoint is not warranted for bixlozone.

10.12.7 Adverse effects on or via lactation

10.12.8 Short summary and overall relevance of the provided information on effects on or via lactation

One- or two-generation reproductive toxicity studies in animals can provide clear evidence of adverse effects on or via lactation in the offspring owing to transfer in the milk or adverse effects on the quality of the milk. Moreover absorption, metabolism, distribution and excretion studies can indicate the likelihood that the substance is present in potentially toxic levels in breast milk.

In the relevant studies available for bixlozone, such as the 2-generation reproductive toxicity study in the rat and the dose range-finding study, there were no adverse effects on or via lactation observed in all treated groups compared to the control groups. There is no absorption, metabolism, distribution and excretion data available which indicate that the substance could be present in potentially toxic levels in breast milk (Section **Error! Reference source not found.**).

10.12.9 Comparison with the GB CLP criteria

Classification for effects on or via lactation might be assigned where: there is human evidence that indicates a hazard to babies during the lactation period; in the case of bixlozone, there is no human data to inform on this end-point since this is a new active substance. In the available two-generation study in rats, there was no evidence to suggest that bixlozone had an adverse effect on lactation or via lactation; therefore classification with this endpoint is not appropriate.

10.12.10 Conclusion on classification and labelling for reproductive toxicity

There was no evidence to suggest that bixlozone had an adverse effect on sexual function and fertility in adult males and females, as well as developmental toxicity in the offspring (including on lactation or via lactation), therefore classification with this endpoint is not warranted.

Not classified – conclusive but not sufficient for classification.

10.13 Aspiration hazard

There are no data available for this endpoint.

11. Evaluation of environmental hazards

Available environmental fate and hazard studies have been considered under the GB CLP Regulation; these are summarised in the Draft Assessment Report (DAR), GB 2022.

11.1 Rapid degradability of organic substances

Method	Results	Remarks	Reference
Ready biodegradation OECD Guideline 301B, GLP	Not readily biodegradable - Maximum of 13% (single replicate) biodegradation after 29 days at 22 °C	Valid	Shannon, M., 2017 (section CA.B.8.2.2.1 in the DAR)
Aquatic hydrolysis OECD Guideline 111, GLP	Stable (<5% degradation) at pH 4 and 7 (50°C) and 9 (25°C)	Valid	Roohi, A.& Cooper, T., 2015 (section CA.B.8.2.1.1 in the DAR)
Aerobic mineralisation OECD Guideline 309, GLP	Not significantly degraded - <10% Applied Radioactivity mineralised after 63 days at 20°C	Valid	Simmonds, R., 2018 (section CA.B.8.2.2.2 in the DAR)
Water/sediment simulation OECD Guideline 308, GLP	DegT ₅₀ of 23.3 to 24.8 days (20°C) based on whole system. Mineralisation: maximum 52% Applied Radioactivity	Valid	Cooper, J.; Challis, P., 2018 (section CA.B.8.2.2.3 in the DAR)
Aquatic photolysis OECD Guideline 316, GLP	Bixlozone DT₅₀ of 44.0 – 54.4 days	Valid	O'Connell, C., 2015 (section B.8.2.1.2 in the DAR)

Table 35: Summary of relevant information on rapid degradability

11.1.1 Ready biodegradability

The applicant submitted a ready biodegradability study in accordance with OECD Guideline 301B (CO₂ Evolution (Modified Sturm Test)) and to GLP. The study was undertaken over 29 days at 22°C in the dark on non-radiolabelled bixlozone, with sodium benzoate used as a reference substance. A sample of activated sludge was collected from a sewage treatment works which has a predominantly domestic waste-water catchment. Bixlozone showed limited biodegradation with a maximum replicate biodegradation of 13% during the study. This is less than the 60% of theoretical maximum CO₂ generation over 28 days used as a criterion for this study type, therefore, bixlozone cannot be considered readily biodegradable.

11.1.2 BOD5/COD

Not applicable

11.1.3 Hydrolysis

The applicant submitted an aquatic hydrolysis study in accordance with OECD Guideline 111 and to GLP. In a preliminary test [phenyl-U-¹⁴C]-bixlozone and [carbonyl-¹⁴C]-bixlozone were added to sterile buffer solutions (7.5 mL) at pH 4, 7 and 9. Bixlozone was shown to be hydrolytically stable at pH 4 and 7 over 5 days at 50°C. Since both labels of bixlozone degraded only at pH 9 (>10% AR), a definitive study was conducted at 25, 40, and 50°C for 30 days at pH 9. Bixlozone did not hydrolyse at pH 9 over 30 days at 25°C with expected DT₅₀-values > 1 year. Therefore, no metabolic pathway has been proposed by the applicant. The rate and extent of degradation, however, increased with increasing temperature and pH. Unidentified metabolites were formed at >10% at pH 9 and 40-50°C, but the CA considers that these metabolites will be unlikely to form at significant levels under environmentally relevant temperature and pH conditions at which hydrolysis is unlikely to be a major route of degradation for bixlozone.

11.1.4 Other convincing scientific evidence

11.1.4.1 Field investigations and monitoring data (if relevant for C&L) Not applicable

11.1.4.2 Inherent and enhanced ready biodegradability tests Not applicable

11.1.4.3 Water, water-sediment and soil degradation data (including simulation studies)

A study of aerobic mineralisation in surface water was carried out in accordance with OECD Guideline 309 and to GLP. A single water sample was collected from Carsington Reservoir UK, and treated with [phenyl-U-¹⁴C]-bixlozone at nominal application rates of 10 and 100 μ g/L and incubated at 20 ± 2°C, in the dark. After 62 days, >90 % of the test substance was recovered in both the 10 μ g/L and 100 μ g/L test systems. Only one sample recorded an unknown degradation product at a concentration >5 % AR and so no major metabolites were detected in the study.

A study of aerobic aquatic mineralisation in two UK water/sediment systems was carried out in accordance with OECD Guideline 308 and to GLP. The water-sediment systems were incubated at $20 \pm 2^{\circ}$ C in the dark until there was complete phase separation and to allow the oxygen levels, pH and redox potentials to establish. The samples were treated with [carbonyl-¹⁴C]- and [phenyl-U-¹⁴C]-bixlozone. Bixlozone (mean of both labels) declined to 5.0% AR and 20.6% AR in the total system, in the Calwich Abbey and Swiss Lake systems, respectively, after 100 days. Bixlozone was observed in sediment at mean maxima of 20.99% AR (phenyl label, mean day 30) and 23.07% AR (carbonyl label, mean

day 30) in the Calwich Abbey and Swiss Lake systems, respectively. The longest nonnormalised water DissT50 value to be used in the exposure assessment was 16 days (Single First Order (SFO) kinetics), derived from Swiss Lake system. The longest nonnormalised sediment DissT50, to be used in the UK spray drift calculations, is 35.2 days (SFO), derived from the Calwich Abbey test system. The total-system DegT50 for Calwich Abbey and Swiss Lake were 23.3 d (SFO) and 24.8 d (Hockey Stick (HS) kinetics) respectively.

Four major metabolites were observed in the water/sediment study: 2,4-dichlorbenzoic acid (max mean total system formation = 40.9% AR), 3-OH-propanamide (max mean total system formation = 10.3% AR), dimethyl malonamide (max mean total system formation = 16.7% AR) and 4-carboxy-bixlozone (max mean total system formation = 24.5% AR). No kinetic assessment was undertaken on the metabolites formed, with the applicant electing to use default values of 1000 d in the exposure assessment instead.

11.1.4.4 Photochemical degradation

A direct photolysis study was submitted by the applicant using [carbonyl-¹⁴C]- and [phenyl-U-¹⁴C]-bixlozone. Bixlozone was slowly degraded to multiple minor photoproducts after 13 days continuous irradiation. All degradation products were < 5% AR at each sampling point. The first-order DT₅₀ values were 44.0 and 54.4 days for [carbonyl-¹⁴C]- and [phenyl-U-¹⁴C]-bixlozone, respectively, under natural summer sunlight at latitude 30-50°N.

11.1.4.5 Conclusion on 'rapid degradability'

Overall, bixlozone does not meet the CLP criteria to be classed as "rapidly degradable" in the environment as there is no evidence to suggest that the active substance is at least 70% degraded in the aquatic environment within 28 days. The active substance is not readily biodegraded and is stable to hydrolysis. Slow degradation was observed in the aerobic mineralisation study and moderate degradation in the aquatic photolysis study. Shorter total-system DT50 values were calculated in the water/sediment simulation study (23.3 d - 24.8 d), however, 70% degradation was not observed in either test system within 28 days. No kinetic assessment was undertaken on the metabolites formed in the water/sediment simulation study, with the applicant electing to use default values of 1000 d in the exposure assessment instead. Therefore, none of the metabolites are classed as being rapidly degradable either.

11.2 Environmental transformation of metals or inorganic metals compounds

Not applicable.

11.3 Environmental fate and other relevant information

11.3.1 Volatilisation

The vapour pressure of bixlozone is 1.1×10^{-3} (20 °C) and so meets the FOCUSair trigger of 10^{-4} for the potential of short range transport from application to soil. The Henry's Law constant is 7.2×10^{-3} (20 °C). A wind tunnel study determined the highest deposition of 0.42% of applied amount. First bleaching of the indicator plants was observed 7 days after treatment and accounted for 7% of total leaf surface area at 1 m distance form application, and 4% of total leaf surface area at 5 m. Bleaching increased over time. At the last assessment on day 21 after exposure, bleaching of 13%, 7% and 1% of the total leaf surface was observed for the 1 m, 5 m and 10 m indicator plants, respectively.

11.3.2 Soil adsorption and desorption

A sorption study was submitted by the applicant using [phenyl-U-¹⁴C]-bixlozone in accordance with OECD Guideline 106 and to GLP. The study used the batch equilibrium method and was undertaken on 8 soils (5 of European origin and 3 of US origin). Adsorption K_{Foc} values for [¹⁴C]-bixlozone were 334 – 465 mL/g (geometric mean 381.5 mL/g, arithmetic mean 1/n = 0.874). Desorption $K_{Foc-des}$ values were 481 – 754 mL/g (geometric mean 564 mL/g, arithmetic mean 1/n = 0.876), indicating that there is a degree of irreversibility to [¹⁴C]-bixlozone adsorption. There was no evidence of any pH dependence.

11.4 Bioaccumulation

One study has been performed measuring the bioaccumulation of bixlozone in fish. This study is summarised in Table 36 below and further discussion is included in Section 11.4.2.

Method	Results	Remarks	Reference
Bioaccumulation	77.5 L kg ⁻¹	Study considered suitable for	Anon, 2016k
in fish		use in hazard classification.	
	(whole fish at 13.0 µg		DAR: B.9.2.2.3
OECD 305	a.s./L)		
(2012) OCSPP			
Draft Guideline	71.7 L kg ⁻¹		
850.1730			
	(whole fish at 130 µg		
GLP	a.s./L)		
17-day exposure			
phase, 7-day			

Method	Results	Remarks	Reference
depuration	Values are lipid		
phase, flow-	normalised (5.35 %)		
through exposure			
	Geometric mean of 74.5		
	L kg ⁻¹		
	Log K _{ow} : 3.3 at pH 4, 7, 9		Colwyn (2016c)
	(20 °C)		

11.4.1 Estimated bioaccumulation

Not applicable, measured partition coefficient and bioaccumulation test data available.

11.4.2 Measured partition coefficient and bioaccumulation test data

The log K_{ow} was determined using the shake flask method in accordance with OECD 107. The measured partition coefficient is a log K_{ow} of 3.3 at 20 °C (pH 4, 7 and 9).

The bioconcentration and metabolism study with bluegill sunfish (*Lepomis macrochirus*) was conducted to GLP and was evaluated according to OECD 305 (2012) and OCSPP Draft Guideline 850.1730. The study met the relevant validity criteria. However, it should be noted that there are a number of deviations from the OECD 305 guideline recommendations which is not ideal. The major issues are outlined below:

The fish in this study were only acclimated to the study conditions for 7 days, rather than 14 days which is the recommended minimum time in OECD 305. However, there was very little mortality in the acclimation period, which meant that the fish were clearly acclimated and settled into the environmental conditions before the test was initiated.

It is noted that the age of the fish was not reported. OECD 305 states that age of a fish may have a significant effect on BCF values, so all fish should be from the same yearclass. Although the study protocol states that the fish should be a similar age, this was not confirmed in the study report. It is noted that the fish were obtained as a single batch from the supplier and a sub-sample of 30 fish had a weight range of 2.81 - 4.26 g, and a length range of 45-69 mm, which supports the possibility that these fish were of a similar age. Following a request for additional information, the applicant confirmed that the specific ages of the fish were not determined but that juvenile fish from the same age class were used. This is considered acceptable.

Lipid content was determined in fish that were not the same as those used to determine the concentration of the test substance. OECD state that in this case, the fish should at least be of a similar weight and the same sex. However, the study report does not state the sex of the fish so it is unclear whether the lipid analysis results are representative of the fish population in the tanks. Following a request for additional information, the applicant confirmed that the sex of the fish was not determined as this would require sacrifice and direct observation of gonads. This adds to uncertainty in the lipid analysis result of 5.35 % as being representative of those fish sampled to measure active substance concentrations and ascertain the bioconcentration factor, however it does not invalidate the test.

The study protocol says that the flow rate will be checked daily, which is in accordance with the OECD 305 guideline (2012). However, this is not mentioned in the study report. OECD 305 also states that the flow through rate through each test chamber should not vary by more than 20 % either within or between chambers. This cannot be confirmed by data included in the study report. However, the delivery system was reported as calibrated to deliver a flow of 420 mL/min of dilution water. Following a request for additional information, the applicant confirmed that the flow rate was checked twice daily and toxicant/solvent used recorded in the raw data.

Fish loading exceeds 1g of fish (wet weight) per litre of water per day on several occasions during the test. However, these occasions are few and only exceed the loading rate by a small amount. The oxygen saturation was also kept above 60 % throughout the exposure and depuration phase of the test. Therefore, this deviation was not considered to invalidate the test.

Whilst the deviations outlined above are not ideal, they are not considered to invalidate the study and warrant further vertebrate testing, noting that the BCF value is well below the trigger of 500. The lipid-normalised steady-state BCF is 77.5 L kg⁻¹ (whole fish at 13.0 μ g a.s./L) and 71.7 L kg⁻¹ (whole fish at 130 μ g a.s./L).

The measured log K_{ow} for bixlozone is 3.3 (see Section 7, Table 7 and Section 11.4, Table 36), according to the guidance on the application of the CLP criteria (ECHA, 2017) this is below the log K_{ow} criterion of 4 and indicates a low bioaccumulation potential for aquatic hazard classification purposes. Also according to this guidance, a measured whole fish BCF should be used in preference when available to conclude on the bioaccumulation potential of a substance (BCF \geq 500 indicates bioaccumulation potential). As the measured BCF values are < 500, it can therefore be concluded that bixlozone does not meet the CLP criteria as a bioaccumulative substance

11.5 Acute aquatic hazard

A summary of the suitable aquatic toxicity studies for bixlozone (both short- and longterm), under Reg. (EC) 1107/2009 are provided in Table 37. All the listed studies have been conducted according to GLP. The studies have been evaluated, considered valid according to the criteria of the respective test guidelines and deemed suitable for hazard classification purposes. Some of the available studies were considered unreliable and hence have not been included here. Only studies submitted testing the technical substance, bixlozone, have been summarised below (formulation studies submitted in the context of the active substance renewal under Reg. (EC) 1107/2009 have not been considered further here). The following metabolites of bixlozone: 2,4-dichlorobenzoic acid, 4-carboxyl-F9600, F9600-dimethyl-malonamide and F9600-3-OH-propanamide were also tested in short-term aquatic toxicity studies that were reviewed under Reg. (EC) 1107/2009. None of these metabolites exhibit equivalent toxicity to bixlozone so are not considered relevant for hazard classification (see Annex I for a list of metabolite toxicity endpoints).

Table 37: Summary of	of relevant	information	on acute	aquatic to	oxicity of	technical
bixlozone						

Method ¹	Species	Endpoint	Results	Remarks	Reference
	1	Fish		1	
Acute toxicity to fish OECD 203 (1992) GLP 96-hours, static exposure	Oncorhynchus mykiss	Mortality	LC ₅₀ 9.8 mg a.s./L _(mm)	Study considered suitable for use in hazard classification.	Anon, 2015g DAR: B.9.2.1
Acute toxicity to fish OECD 203 (1992) GLP 96-hours, static exposure	Lepomis macrochirus	Mortality	LC ₅₀ 13 mg a.s./L _(mm)	Study considered suitable for use in hazard classification.	Anon, 2015h DAR: B.9.2.1
Acute toxicity to fish OECD 203 (1992) GLP 96-hours, static exposure	Cyprinodon variegatus	Mortality	LC ₅₀ 14 mg a.s./L _(mm)	Study considered suitable for use in hazard classification.	Anon, 2015i DAR: B.9.2.1
Fish early-life stage toxicity OECD 210 GLP	Pimephales promelas	Hatchability, average days to hatch, rate of developmental abnormality, survival rate, body weight, total length	EC10, total length 4.6 mg a.s./L (mm) EC20, total length 7.6 mg a.s./L (mm)	Study considered suitable for use in hazard classification.	Anon, 2016j DAR: B.9.2.2.1

32 days			NOEC, total length 0.38 mg		
Flow-through			a.s./L _(mm)		
		Aquatic inve	rtebrates		
Acute toxicity OECD 202 (2004) GLP	Daphnia magna	Immobility	EC ₅₀ >2.6 mg a.s./L _(mm)	Study considered suitable for use in hazard classification.	Shaw (2015) DAR: B.9.2.4.1
48-hours, static exposure					
Acute toxicity OCSPP Draft Guideline 850.1035 GLP 96-hours, static exposure	Americamysis bahia	Mortality	LC ₅₀ 0.14 mg a.s./L _(mm)	Study considered suitable for use in hazard classification.	Shaw (2016a) DAR: B.9.4.2
Acute toxicity OECD 202 (2004)/OECD 235 (2011) GLP 48-hours, static exposure	Caecidotea communis	Immobility	EC ₅₀ >1.6 mg a.s./L _(mm)	Study considered suitable for use in hazard classification.	Mason (2017a) DAR: B.9.2.4.2
Acute toxicity OECD 235 (2011) GLP 48-hours, static exposure	Chironomus riparius	Immobility	EC ₅₀ 1.9 mg a.s./L _(mm)	Study considered suitable for use in hazard classification.	Mason (2017d) DAR: B.9.2.4.2
Acute toxicity OECD 202 (2004)/OECD 235 (2011)	Pycnopsyche gentilis	Immobility	EC ₅₀ 0.33 mg a.s./L _(mm)	Study considered suitable for use in hazard classification.	Mason (2018a) DAR: B.9.2.4.1

GLP					
48-hours, static exposure					
Acute toxicity OECD 202 (2004)/OECD 235 (2011) GLP 48-hours, static	Hexagenia limbata	Immobility	EC ₅₀ 1.5 mg a.s./L _(mm)	Study considered suitable for use in hazard classification.	Mason (2018b) DAR: B.9.2.4.2
exposure Acute toxicity OECD 202 (2004)/OECD 235 (2011) GLP 48-hours, static exposure	Thamnocephalu s platyurus	Immobility	EC ₅₀ 0.11 mg a.s./L _(mm)	Study considered suitable for use in hazard classification.	Mason (2018c) DAR: B.9.2.4.2
Reproduction study GLP 28-days, flow- through	Americamysis bahia	Survival, post- pairing survival, 28-day survival, offspring per female, body length of parent, dry weight of parent, F1 survival 96 h post-release	NOEC 0.12 mg a.s./L _(mm)	Study considered suitable for use in hazard classification.	Marini (2017) DAR: B.9.2.5.2
Mortality and growth GLP OCSPP 850.1735 (2016) 10-days, static- renewal	Hyalella azteca	Mortality and growth (dry weight)	10-day LC/EC ₅₀ (based on growth and survival): >84 mg a.s./kg sediment dry weight > 8.2 mg a.s./L (mm)	Study considered suitable for use in hazard classification.	Staggs (2016) DAR: B.9.2.5.4

			NOEC 84 mg a.s./kg sediment dry weight (mm) 8.2 mg a.s./L (mm)		
Reproduction study OECD 218 (2004) GLP 28-days Dosed via sediment	Chironomus riparius	Emergence, development rate	EC ₁₀ 69 mg a.s./Kg dw sediment (mm) EC ₁₀ 3 mg a.s./L (mm) NOEC 49 mg a.s./Kg dw sediment (mm) NOEC 1.3 mg a.s./L (mm)	Study considered suitable for use in hazard classification	Snow (2019) DAR: B.9.2.5.4
	1	Alga			
Freshwater algal growth inhibition OECD 201 (2011) GLP 96-hours, static exposure	Raphidocelis subcapitata (formerly known as Pseudokirchneri ella subcapitata)	Growth rate, yield, biomass	72 hour ErC ₅₀ 14 mg a.s./L (mm) 72 hour ErC ₁₀ 4.5 mg a.s./L (mm) 72 hour NOE _r C 0.92 mg a.s./L (mm)	Study considered suitable for use in hazard classification.	Softcheck (2015a) DAR: B.9.2.6.1
Growth	Lemna gibba	Growth frond	ErC50, frond density	Study	Kirkwood
inhibition test OECD 221 (2006) GLP 7-days, static, water only		number, growth dry weight, yield frond number, Yield dry weight	21 mg a.s./L (mm) ErC10, frond density 2.4 mg a.s./L (mm) NOEC frond density 1.6 mg a.s./L (mm)	considered suitable for use in hazard classification.	(2015a) DAR: B.9.2.7

Water-	Myriophyllum	Growth rate	ErC _{50, shoot}	Study	Kirkwood
Sediment	spicatum	total shoot	_{length} 3.2 mg	considered	(2015b)
Toxicity Test		length, yield	a.s./L (im)	suitable for	
		total shoot		use in hazard	DAR: B.9.2.7
OECD 239		length, growth	ErC _{20, shoot}	classification.	
(2014)		rate wet	length 0.033 mg		
× /		weight, yield wet weight,	a.s./L (im)		
GLP		growth rate dry	(111)		
14-days, static		weight, yield			
renewal, water-		dry weight			
sediment		, ,	ErC _{10, shoot}		
system dosed			length 0.0071		
via water			mg a.s./L (im)		
			NOErC, shoot		
			length 0.0096		
			-		
			mg a.s./L _(im)		

¹ All studies were conducted with batch PL14-0049, Purity: 96.0%

Bixlozone was referred to as F9600 in the study reports

Bold entries are the endpoints considered most suitable to set the hazard classification for the active substance for each group of organisms.

mm = mean measured concentration nom = nominal concentration im = initial measured concentration

11.5.1 Acute (short-term) toxicity to fish

Three acute toxicity studies were conducted with fish using the following species: *Oncorhynchus mykiss, Lepomis macrochirus* and *Cyprinodon variegatus.* All three studies were performed to the OECD 203 (1992) guideline, according to GLP and were deemed valid for use in hazard classification.. The lowest endpoint is from the study with *O. mykiss;* an **LC**₅₀ value of 9.8 mg a.s./L (mean measured). It is noted that fish are not the most acutely sensitive group of organisms and therefore not critical for hazard classification purposes.

11.5.2 Acute (short-term) toxicity to aquatic invertebrates

A total of 9 acute aquatic invertebrate toxicity studies using the active substance were conducted with the following species: *Daphnia magna, Americamysis bahia, Caecidotea communis, Chironomus riparius, Pycnopsyche gentilis, Hexagenia limbate, Thamnocephalus platyurus, Brachionus calyciflorus* and *Gammarus fasciatus*. All 9 studies were conducted to GLP. The studies testing *D. magna, A. bahia,* and *C. riparius* were conducted to standard guidelines (OECD 202 (2004), OCSPP draft 850.1035, OECD 235 (2011), respectively). There were no deviations or observations of note and the studies are considered suitable for use in hazard classification. Studies testing *C. communis, P. gentilis, H. limbate,* and *T. platyurus, B. calyciflorus* and *G. fasciatus* were conducted with wild caught test organisms, no specific guidelines are available for testing these species

but the OECD 202/235 guideline was used as a reference. These studies were also considered valid for use in hazard classification with the exception of the studies testing B. calyciflorus and G. fasciatus. For B. calyciflorus this was due to a lack of reference item being tested; according to ASTM 1440-91 (2004), copper is a suitable toxic reference item and the lack of reference item indicates that the sensitivity of the test organisms cannot be confirmed. In addition, the endpoint relates to only 24 hours of exposure. Regarding G. fasciatus, this study was conducted in accordance with OECD 202/235, however there is an available EPA guideline for this species (850.1020, 2016). It was noted that there were several deviations from this guideline, most notably the test duration, which is stated should be a minimum of 96 hours, whereas this study was conducted for 48 hours. This raises concerns as to whether the endpoint derived from this study is worst-case, noting that mortality doubled between 24 and 48 hours (mortality was observed in treatment groups at 1.3, 2.4 and 5.4 mg a.s./L; respectively, mortality increased from 5, 20 and 55 % at 24 hours to 10, 40 and 100 % at 48 hours in these treatment groups). Whilst these two studies are not considered reliable, it should be noted that the results do not indicate an increased sensitivity in comparison to the other species tested as the lowest concentrations where any mortality was observed was 2.2 mg a.s./L and 1.3 mg a.s./L for B. calyciflorus and G. fasciatus respectively, which is more than an order of magnitude higher than the lowest derived EC_{50} (0.11 mg a.s./L).

Group	Test substance	Time-scale (Test type)	End point	Toxicity ¹			
Aquatic invertebrates							
Daphnia magna	Bixlozone	48 h (static)	Mortality, EC ₅₀	>2.6 mg a.s./L _(mm)			
Americamysis bahia	Bixlozone	96 h (static)	LC ₅₀	0.14 mg a.s./L _(mm)			
Caecidotea communis	Bixlozone	48 h (static)	Mortality, EC₅₀	>1.6 mg a.s./L _(mm)			
Chironomus riparius	Bixlozone	48 h (static)	Mortality, EC₅₀	1.9 mg a.s./L _(mm)			
Pycnopsyche gentilis	Bixlozone	48 h (static)	Mortality, EC₅₀	0.33 mg a.s./L _(mm)			
Hexagenia limbata	Bixlozone	48 h (static)	Mortality, EC₅₀	1.5 mg a.s./L _(mm)			
Thamnocephalus platyurus	Bixlozone	48 h (static)	Mortality, EC ₅₀	0.11 mg a.s./L _(mm)			

Table 38: Summar	y of reliable acute toxicity	data for aquatic invertebrates
------------------	------------------------------	--------------------------------

¹ mm = mean measured concentration

The lowest reliable endpoint was for *T. platyurus*, with an **EC**⁵⁰ of **0.11 mg a.s./L** (mean measured). Aquatic invertebrates are the most acutely sensitive group to exposure to

bixlozone based on the information available and will be used for acute hazard classification purposes.

11.5.3 Acute (short-term) toxicity to algae or other aquatic plants

<u>Algae</u>

Four algal studies were submitted testing the active substance and all were conducted to GLP. However, only one study, the study conducted with *Raphidocelis subcapitata* met all of the relevant validity criteria in accordance with OECD 201 (2011). The other studies conducted with different species of algae did not meet all of the validity criteria specified in the study guidelines (OECD 201, 2011) at any time point during the test. The mean coefficient of variation (CV) for section-by-section specific growth rates in the water control replicates was 67.3 % (96 hours) and 68.8 % (72 hours) for Skeletonema costatum. This value exceeds the guideline requirement (35 %) and the average CV based on historical data determined for S. costatum at Smithers Viscient (43 % based on N=5). It also failed one of the EPA OSCPP 850.4500 (2012) validity criteria at 72 hours, the co-efficient of variation of mean yield was 18.1 % compared with criteria of < 15 %. For Navicula pelliculosa, the CV between water control replicates for the section-by-section growth rate exceeds the limit of 35% set out in OECD 201 (2011) (observed: 72-hours, 41 %; 96hours, 35.1%). Additionally, the results from the solvent control fail to meet the validity criterion at either 72- or 96-hours (observed: 72-hours, 64.3 %; 96-hours, 52.9 %). For Anabaena flos-aquae, the mean CV for section-by-section specific growth rates in the water control replicates exceeded 35 % (actual: 110 % at 96 hours) therefore this criterion was not met. Following a request for additional information, the applicant stated that the other two OECD 201 validity criteria were met at 72 hours, which the endpoints were based on. However, according to OECD 201, the mean CV for section-by-section specific growth rates in the control cultures was 116 %, thus exceeding the 35 % specified in the guidance. This value also exceeds the average CV based on historical data determined for A. flos-aquae at Smithers Viscient (97 % based on N=5). Therefore, the study and its endpoints are not considered valid.

Regarding the valid study conducted with *R. subcapitata,* it was noted that 96-hour endpoints were not based on the raw data from the study and are incorrect. The applicant was given the opportunity to provide corrected values but opted not to. Therefore, only endpoints at 72-hours are considered valid. The **72-hour** E_rC_{50} was **14 mg a.s./L and the 72-hour** E_rC_{10} was **4.5 mg a.s./L** based on mean measured concentrations. The **72 hour NOE**_rC was **0.92 mg a.s./L** based on mean measured concentrations. It is noted that ultimately algae are not the most acutely sensitive group and therefore not critical for hazard classification purposes.

According to Commission Regulation (EU) 283/2013, where an active substance is known to exhibit herbicidal activity, "*a second species from a different taxonomic group shall be performed such as a diatom, for example Navicula pelliculosa*". Therefore, as bixlozone is

a herbicide, a valid study with a second algal species should be provided. Nevertheless, the Agency has considered this issue further by comparing the toxicity endpoint derived for *R. subcapitata* in the active substance study ((72 hour E_rC_{50} of 14000 µg a.s./L (mm) with the corresponding endpoints derived from the formulation studies conducted with *R. subcapitata* (72-hour, E_rC_{50} = 53 mg test item/L equivalent to 19.29 mg a.s./L) and *S. costatum* (17 mg test item/L equivalent to 6.18 mg a.s./L).

Test substance	Test organism	Test system	Endpoint (mg/L) ¹		Reference			
Toxicity to algae								
Bixlozone	Raphidocelis subcapitata	Static, 96- hours	72 h ErC ₅₀	14 mm	Softcheck (2015a)			
			72 h ErC ₁₀	4.5 mm				
			72 h NOE _r C	0.92 mm				
'F9600 4SC'			72 h ErC ₅₀	53 / 19.29 nom				
	Raphidocelis	Static, 96-	72 h ErC10	19 / 6.9 nom	Softcheck			
	subcapitata	hours	72 h NOE _r C	13 / 4.73 nom	(2017a)			
				(f.p. / a.s.)				
'F9600 4SC'			72 h E _r C ₅₀	17 /6.18 mm				
			72 h ErC ₁₀	7.5 / 2.7 mm				
	Skeletonema	Static, 96-	72 h NOE _r C	6.1 / 2.22 mm	Softcheck			
	costatum	hours		(f.p. / a.s.)	(2016a)			

¹ mm = mean measured concentration nom = nominal concentration f.p. = formulated product

This comparison indicates that the formulation is of similar toxicity to *R. subcapitata* as the active substance when considering the 72 hour E_rC_{50} values. The toxicity endpoint for *S. costatum* is approximately 3.1 fold lower than that obtained for *R. subcapitata* when tested with the formulation. Therefore, it is anticipated that if a valid study conducted with the active substance was available for *S. costatum* it would likely result in a lower endpoint than that obtained with *R. subcapitata* (this is also indicated by the results from the invalid study with *S. costatum*). If it were 3-4 fold lower then this would result in a similar acute toxicity endpoint to that based on growth rate for *Myriophyllum spicatum*. However, given the magnitude of difference in the endpoints derived for algae and aquatic plants when compared with aquatic invertebrates, the Agency considers the provision of an additional algal species study would be highly unlikely to alter the acute hazard classification driven by the toxicity to aquatic invertebrates.

Aquatic plants

Two studies were conducted with aquatic macrophytes; one with *Lemna gibba* and one with *Myriophyllum spicatum*. Both studies were conducted to GLP and considered valid for regulatory purposes.. The study with *L. gibba* was conducted in accordance with OECD 221 (2006) and the study with *M. spicatum* was conducted in accordance with OECD 239

(2014). For both studies the validity criteria were met, but there were deviations from the guideline recommendations. The following deviations relate to the study conducted with *M. spicatum* which was the more sensitive of the two species tested.

No toxic reference standard was included in the test; it is stated in OECD 239 (2014) that a reference substance such as 3,5-dichlorophenol should be periodically tested to check the performance of the test system over time. Therefore, this adds some uncertainty to the sensitivity of the test system, but is not an absolute requirement.

According to the OECD 239 (2014), the artificial sediment should be made up in line with OECD 219. The study report refers to OECD 218, which has the same composition as that in OECD 219 so is considered acceptable; however both guidance documents state that fine sand should predominate with > 50 % of particles between 500 and 200 μ m. It is not clear if this is the case as the proportions of fine and coarse sand are not stated in the study report and no reference is made to the particle size. However, the controls met the validity criteria (with the exception of the replicate excluded from analysis) indicating that this did not have a significant impact on plant health.

One replicate (D) in the water control group was observed to have substantially lower yields and growth rates for all endpoints, in comparison to the remaining three control replicates. It was also noted that the CV for yield based on shoot wet weight in the pooled controls was 42 %, slightly exceeding the guideline criterion of < 35 %. For this reason, the study author performed Grubb's Test (U.S. EPA, 2002) for statistical outliers for all endpoints using the 14-day termination data, and control replicate D was determined to be an outlier for the growth rate based on shoot wet weight and shoot dry weight endpoints. Although no definitive reason could be identified for this replicate being an outlier, the plants were observed to have extensive filamentous algal growth present at test termination, which can be indicative of poor plant health (filamentous algae was not observed in control replicate D on the plants during the day 7 biological observations).

The pH of the control media increased from 7.2 to 10.0 from the start to the end of the test. This is more than the 1.5 units specified in the test guidelines, however as the validity criteria were met, it is not considered to invalidate the test.

The nominal test concentrations in the study were 0.0098, 0.039, 0.16, 0.63, 2.5 and 10 mg a.s./L. Test concentrations were measured in the new solutions on days 0 and 7 and in the aged test solutions on days 7 and 14. The initial measured concentrations (Day 0) were 0.0096, 0.034, 0.17, 0.58, 2.4 and 8.8 mg a.s./L. The corresponding mean measured concentrations were 0.0094, 0.033, 0.15, 0.56, 2.3 and 9.2 mg a.s./L and hence mean concentrations measured in the water phase were in the range 85-97 % of nominal. The lowest recovery was 82 % of nominal (in one of the day 7 aged samples). No analytical measurements were made in the sediment phase. However, the recovery in the water phase indicated that concentrations were maintained within 80-100 % of nominal in

the water phase. Therefore, the basing of results on initial measured concentrations is deemed acceptable.

Phytotoxic effects were observed at every treatment concentration tested. It is noted that when considering the overall effects due to the test item based on the number of plants affected and the percentage coverage of the plants affected that \geq 50 % effects were not observed for chlorosis. However, % effects were not reported for root growth and apical bud damage. In the 0.0096 mg a.s./L treatment level eight plants were observed to be healthy while four plants were observed to be chlorotic at exposure termination (see Table 40 below).

Initial			Morphological Observations				Root	
Measured Concentration (mg/L)	Replicate	Plant	Day 0	Day 7	%Effect	Day 14	%Effect	Biological Observations ^a
Control	A	1	Н	H	0	H	0	4
		1 2 3	Н	H	0	Н	0	4
			\mathbf{H}	Н	0	Н	0	4
	в	1	Η	\mathbf{H}	0	Н	0	4
		2	Н	Н	0	Н	0	4
		3	н	H	0	Н	0	4
	С	1	Н	Н	0	Н	0	4
		2 3	Н	Н	0	Н	0	4
			Н	Н	0	н	0	4
	D	1	Н	н	0	FA/H	0	4 2 2
		2	Η	н	0	FA/H	0	2
		3	H	Н	0	FA/H	0	2
Solvent	A	1	H	Н	0	H	0	4
		2	Н	н	0	н	0	4
		3	Н	Н	0	н	0	4
	В	1	Н	н	0	H	0	4
		2	H	н	0	Н	0	3
		3	Н	Н	0	Н	0	3 3
	С	1	Н	Н	0	н	0	4
	_	2	H	Н	0	Н	0	4
		3	H	H	Ō	H	Ō	4
	D	ĩ	Ĥ	Ĥ	ŏ	Ĥ	ŏ	3
	2	2	H	Ĥ	ŏ	Ĥ	ŏ	3 2 4
		3	Ĥ	Ĥ	ŏ	Ĥ	ŏ	4
	Е	1	Ĥ	Ĥ	ŏ	Ĥ	ŏ	3
	L	2	Ĥ	H	ŏ	Ĥ	ŏ	4
		3	Ĥ	Ĥ	ŏ	Ĥ	ŏ	4
	F	1	Ĥ	Ĥ	ŏ	H	ŏ	4
		2	Ĥ	Ĥ	ŏ	Ĥ	ŏ	
		3	Ĥ	H	ŏ	H	ő	3 3
	G	ĩ	H	Ĥ	Ő	H	ŏ	4
	0	2	Н	H	0	Ĥ	õ	4
		3	Н	Н	0	H	0	4
	н	1	Н	Н	0	Н	0	4
	п	2	H	H	0	H	0	3
		3	н Н	H	0	Н	0	5 4

Table 40: Morphological observations for controls and 0.0096 mg a.s./L treatment

Initial			Morphological Observations					Root
Measured Concentration (mg/L)	Replicate	e Plant	Day 0	Day 7	%Effect	Day 14	%Effect	Biological Observations ^a
0.0096	Α	1	H	Н	0	Ĥ	0	3
		2	H	H	Ō	H	0	3
		3	H	H	0	С	5	3
	в	1	н	H	0	н	0	3
		2	H	H	0	Н	0	3
		3	H	H	0	Н	0	3
	С	1	Ĥ	Ĥ	Õ	С	5	3
	-	2	Ĥ	Ĥ	õ	Č	5	2
		3	Ĥ	Ĥ	ŏ	č	10	3
	D	ĩ	Ĥ	Ĥ	ŏ	Ĥ	0	2
	2	2	Ĥ	Ĥ	ŏ	Ĥ	ŏ	$\overline{2}$
		3	Ĥ	Ĥ	ŏ	Ĥ	ŏ	3

Root biological observations are denoted as follows: 2 = few roots, 3 = moderate root development,
 4 = very good root development.

H = Healthy

FA = Extensive filamentous algae observed on plant.

Table 41: Summary of results for shoot length, wet weight and dry weight

Initial Measured	Shoot L	ength (cm)	Shoot Wet	Weight (g)°	Shoot Dry Weight ^d (g)	
Concentration (mg test item/L)	Mean (SD)	% Inhibition ^ь	Mean (SD)	% Inhibition⁵	Mean (SD)	% Inhibition
Control ^a	20.2 (1.9)	n.a [.]	0.5444 (0.0417)	n.a.	0.0479 (0.0011)	n.a.
Solvent Control	18.7 (4.6)	n.a.	0.4865 (0.1625)	n.a.	0.0461 (0.0106)	n.a.
0.0096	16.8 (3.7)	12	0.4935 (0.0569)	2	0.0486 (0.0040)	-4
0.034	13.5 (2.4)	29	0.3872 (0.0879)	23	0.0414 (0.0106)	11
0.17	14.8 (2.0)	23	0.4407 (0.0549)	12	0.0488 (0.0071)	-5
0.58	11.0 (1.5)	42	0.2728 (0.0469)	46	0.0369 (0.0050)	21
2.4	9.4 (1.7)	51	0.2603 (0.0588)	48	0.0347 (0.0025)	25

Initial Measured	Shoot Length (cm)		Shoot Wet	Weight (g)°	Shoot Dry Weight ^d (g)		
Concentration (mg test item/L)	Mean (SD)	% Inhibition ^b	Mean (SD)	% Inhibition⁵	Mean (SD)	% Inhibition	
8.8	7.3 (1.7)	62	0.2572 (0.0891)	49	0.0412 (0.0081)	12	

^a Replicate D was removed as it was determined to be a statistical outlier

^b Percent inhibition is calculated relative to the pooled control

^c Wet weight of representative sample (N = 15) at exposure initiation = 0.0885 g

^d Dry weight of representative sample (N= 15) at exposure initiation = 0.0092 g.

n.a = not applicable

Table 42: Mean values for yield and growth rate based on shoot length after 14 days exposure

Initial measured concentration	Yield (SD)	% Yield inhibition ^b	Average Growth rates (SD)	% Growth Rate inhibition ^b
(mg test item/L)				
Control ^a	13.6 (1.6)	n.a [.]	0.0796 (0.0057)	n.a.
Solvent Control	12.7 (3.9)	n.a.	0.0802 (0.0148)	n.a.
0.0096	10.5 (3.1)	19	0.0692 (0.0106)	14
0.034	8.0 ° (1.6)	38	0.0638 ^d (0.0079)	20
0.17	8.6 ° (2.0)	33	0.0623 ^d (0.0110)	22
0.58	5.3 ° (1.5)	59	0.0465 ^d (0.0109)	42
2.4	4.3 ° (1.5)	66	0.0445 ^d (0.0145)	44
8.8	1.9 ° (0.9)	85	0.0224 ^d (0.0121)	72

^a Replicate D was removed as it was determined to be a statistical outlier.

^b Percent inhibition is calculated relative to the pooled control.

^c Significantly reduced compared to the pooled control, based on Dunnett's Multiple Comparison Test

^d Significantly reduced compared to the pooled control, based on William's Multiple Comparison Test

n.a = *not* applicable

Table 43: Mean values for yield and growth rate based on shoot wet weight after 14days exposure

Mean Measured concentration	Yield (SD)	% Yield inhibition ^b	Average Growth rates (SD)	% Growth Rate inhibition ^b
(mg test item/L)				
Control ^a	0.4559 (0.0417)	n.a,	0.1296 (0.0056)	n.a,
Solvent Control	0.3980 (0.1625)	n.a,	0.1181 (0.0248)	n.a,
0.0096	0.4050 (0.0569)	2	0.1224 (0.0082)	-1
0.034	0.2987 (0.0879)	28	0.1041 (0.0159)	14
0.17	0.3522 (0.0549)	15	0.1142 (0.0090)	6
0.58	0.1843 ° (0.0469)	55	0.0796 ° (0.0125)	34
2.4	0.1718° (0.0588)	58	0.0757 ° (0.0162)	38
8.8	0.1687°(0.0891)	59	0.0724 ° (0.0279)	40

^a Replicate D was removed as it was determined to be a statistical outlier.

^b Percent inhibition is calculated relative to the pooled control.

^d Significantly reduced compared to the pooled control, based on Dunnett's Multiple Comparison Test

n.a = *not* applicable

Table 44: Mean values for yield and growth rate based on shoot dry weight after 14days exposure

Mean Measured concentration (mg test item/L)	Yield (SD)	% Yield inhibition ⁵	Average Growth rates (SD)	% Growth Rate inhibition ^b
Control ^a	0.0387 (0.0111)	n.a.	0.1177 (0.0017)	n.a.
Solvent Control	0.0369 (0.0106)	n.a.	0.1132 (0.0170)	n.a.
0.0096	0.0394 (0.0040)	-5	0.1185 (0.0058)	-4

0.034	0.0322 (0.0106)	14	0.1057 (0.0169)	8
0.17	0.0395 (0.0071)	-6	0.1184 (0.0102)	-3
0.58	0.0277 (0.0050)	26	0.0986 (0.0094)	14
2.4	0.0255 ° (0.0025)	32	0.0946 ° (0.0052)	17
8.8	0.0320 (0.0081)	14	0.1058 (0.0147)	8

^a Replicate D was removed as it was determined to be a statistical outlier.

^b Percent inhibition is calculated relative to the pooled control.

^c Significantly reduced compared to the pooled control, based on Dunnett's Multiple Comparison Test

n.a = not applicable

Shoot length and phytotoxic effects are the most sensitive parameters measured in the *M. spicatum* study.

The study conducted with *M. spicatum* in a water-sediment system resulted in the lowest standard endpoint based on a reduction in shoot length; a 14 day E_rC_{50} of 3.2 mg a.s./L based on initial measured concentrations. However, given the effects on yield, phytotoxicity and morphology, a more precautionary endpoint – an E_rC_{20} of 0.033 mg a.s./L has been selected.

It is noted that aquatic plants are not the most acutely sensitive group, but are the most sensitive chronic group for hazard classification purposes.

11.5.4 Acute (short-term) toxicity to other aquatic organisms

No data are available for other taxa.

11.6 Long-term aquatic hazard

11.6.1 Chronic toxicity to fish

A long-term toxicity early life stage (ELS) study was conducted with fathead minnow (*Pimephales promelas*) in accordance with OECD 210 (2012). The study was considered valid, however it is noted that the statistically-derived NOEC (0.38 mg a.s/L) based on total length was significantly lower than the corresponding EC₁₀ value (4.6 mg a.s/L). The study summary can be found in Annex 1. Whilst only a 5.0 - 5.8 % effect on fish total length was observed, with no corresponding effect on wet weight, it was statistically significant and the biological relevance of this impact on fish length is unknown. Given the magnitude of difference between the NOEC and EC₁₀, the NOEC of 3.8 mg a.s./L has been retained as a more precautionary endpoint. Nevertheless, it is noted that fish are not the most chronically sensitive group for hazard classification purposes.

11.6.2 Chronic toxicity to aquatic invertebrates

Two long-term studies with aquatic invertebrates were conducted; one with *Daphnia magna* and one with *Americamysis bahia*. However, only the study conducted with *A. bahia* was considered valid. In *the D. magna* study there were long intervals where no chemical analysis took place (e.g. no analysis between day 5 and day 16, a duration in which a number of renewals have taken place) hence a full picture of the behaviour of the test item is not available. As a consequence, there is uncertainty in the exposure to test media over the duration of the study and hence in the endpoint derived. The study conducted with *A. bahia* was a flow-through design and although the study was conducted to EPA OPPTS 850.1350, it was evaluated using validity criteria from ASTM E 1191-03a (2008) as there was limited guidance on the acceptability of the test in 850.1350. The study was considered valid according to both sets of guidelines. The only deviation from the guideline was the photoperiod (16:8 light:dark in this test, the recommended photoperiod in 850.1350 is 14:10 light:dark). However, this is not thought to have affected the results of the study as all validity criteria were met.

No chronic study was conducted with *T. platyurus* the most sensitive of the invertebrate species tested for acute toxicity. However, it is noted that the acute toxicity endpoints for *T. platyurus* and *A. bahia* were very similar (0.11 and 0.14 mg a.s./L respectively). As *A. bahia* is more sensitive than *D. magna* (> 2.6 mg a.s./L) and appears to be one of the most sensitive species tested (based on acute toxicity) and comparable to *T. platyurus*, a chronic test with *A. bahia* is deemed acceptable. Only a NOEC could be derived for *A. bahia* as the only statistically significant effect was at the highest test concentration and at the preceding concentration, an effect of <10 % was observed. The derived **28 day NOEC is 0.12 mg a.s./L** (mean measured), noting that aquatic invertebrates are not the most chronically sensitive group for hazard classification purposes.

11.6.3 Chronic toxicity to algae or other aquatic plants

The available studies related to algae and aquatic plants have been summarised in Section 11.5.3 .

Aquatic plants are the most sensitive chronic group based on the available data and are driving the chronic classification. The study conducted with *M. spicatum* in a water-sediment system resulted in the lowest endpoint based on a reduction in shoot length and phytotoxicity; the 14 day NOEC based on shoot length and phytotoxicity was 0.0096 mg a.s./L and the E_rC_{10} based on shoot length was 0.0071 mg a.s./L based on initial measured concentrations (E_rC_{10} value was extrapolated below the lowest treatment based on available data as a consequence the 95 % confidence limit is wide 0.0019-0.17 mg a.s./L). Whilst a 14 % reduction in growth rate and 19 % reduction in yield (based on shoot length after 14 days) were obtained in the 0.0096 mg a.s./L treatment (initial measured) neither of these reductions were statistically significant. Statistically significant

reductions in yield and growth rate were obtained in the next highest treatment of 0.034 mg a.s./L – see Table 42.

Based on the 'Guidance on the Application of the CLP Criteria' (ECHA, 2017) the E_rC_{10} value has been used preferentially over the NOE_rC to determine the chronic hazard classification, and noting that the E_rC_{10} is more conservative.

11.6.4 Chronic toxicity to other aquatic organisms

Three studies conducted on *Chironomus* species were submitted. However, only one study conducted with *Chironomus riparius* (Snow 2019) was considered valid. OECD 218 validity criteria were not met in the other two studies and there were a number of deviations from guideline recommendations. The Snow 2019 study was conducted according to OECD 218 (2004) and met all the validity criteria. The mass balance of the test system at day 0 ranged between 99-106 % and at day 28 ranged between 73-90 %, as such results are based on geometric mean measured concentrations. The **28 day EC**₁₀ **based on midge development is 69 mg a.s./Kg dw sediment and 3.0 mg a.s./L overlying water**. The corresponding NOEC is 49 mg a.s./Kg dw sediment and 1.3 mg a.s./L overlying water.

One study conducted on *Hyalella azteca* was also submitted. This study was conducted according to OCSPP 850.1735 (2016) and following GLP. This study is considered valid and the endpoints derived are **10-day LC/EC**⁵⁰ (based on growth and survival): >84 mg a.s./kg dw sediment based on mean measured concentrations in sediment. The 10-day NOEC was 84 mg a.s./Kg dw sediment. The corresponding 10-day LC/EC⁵⁰ based on mean measured pore water concentrations: > 8.2 mg a.s./L. The 10-day NOEC was 8.2 mg a.s./L.

Sediment dwelling aquatic invertebrates are not the most chronically sensitive group for hazard classification purposes.

11.7 Comparison with the GB CLP criteria

11.7.1 Acute aquatic hazard

Reliable acute aquatic toxicity data on technical bixlozone are available for fish, invertebrates, algae and other aquatic plants (i.e. there are appropriate data for all three trophic levels that need to be assessed for CLP classification). The lowest LC₅₀/EC₅₀ value is the mean measured 48-hour EC₅₀ of 0.11 mg a.s./L for the aquatic invertebrate *Thamnocephalus platyurus* (Mason 2018c). This EC₅₀ is > 0.1 mg/L but \leq 1 mg/L, therefore bixlozone meets the criteria for classification as Aquatic Acute Category 1 with an acute M-factor of 1. Information presented in Annex I indicates the metabolites of bixlozone are less toxic than the parent and are therefore not considered relevant for hazard classification.

11.7.2 Long-term aquatic hazard (including bioaccumulation potential and degradation)

Rapid degradability

Bixlozone is considered to be 'not rapidly degradable' according to the CLP criteria, this decision has been explained in full in the environmental fate section (Section 11.1.1).

Bioaccumulation

Bixlozone has a measured log K_{ow} of 3.3, which is lower than the CLP trigger of \geq 4, therefore, for hazard classification purposes, it does not indicate a potential for bioaccumulation.

An experimental fish bioaccumulation study is available and the lipid-normalised BCF values for bixlozone (from Anon, 2016k) are 77.5 L kg⁻¹ (whole fish at 13.0 μ g a.s./L) and 71.7 L kg⁻¹ (whole fish at 130 μ g a.s./L). According to the guidance on the application of the CLP criteria (ECHA, 2017) a measured whole fish BCF should be used in preference when available to conclude on the bioaccumulation potential of a substance (BCF \geq 500 indicates bioaccumulation potential). As the measured BCF values are < 500, it can therefore be concluded that bixlozone does not meet the CLP criteria for potential bioaccumulation.

Chronic toxicity

Reliable long-term aquatic toxicity data on technical bixlozone are available for fish, invertebrates, algae and other aquatic plants (i.e. there are appropriate data for all three trophic levels that need to be assessed for CLP classification). Based on the Guidance on the Application of the CLP Criteria (ECHA, 2017) the EC₁₀ values are generally used preferentially over NOEC values to determine the chronic hazard classification. The lowest overall EC₁₀ value considered valid (see Section 11.6.3) is the mean measured 14-day E_rC_{10} of 0.0071 mg a.s./L based on shoot length for the aquatic plant *Myriophyllum spicatum* (derived from Kirkwood 2015b). This is > 0.001 mg/L but ≤ 0.01 mg/L, therefore since bixlozone is considered to be 'not rapidly degradable' it meets the criteria for classification and M factor would be the same if the NOEC was used instead of the E_rC_{10} .

11.8 Conclusion on classification and labelling for environmental hazards

Based on the information evaluated above; bixlozone is considered to be 'not rapidly degradable' and does not meet the CLP criteria for potential bioaccumulation. It is sufficiently toxic to warrant the highest CLP classifications for both acute (H400) and chronic (H410) hazards to the aquatic environment, with acute and chronic M-factors of 1 and 10 respectively.

Classification:

Aquatic Acute 1; H400: Very toxic to aquatic life. Acute M-Factor of 1

Aquatic Chronic 1; H410: Very toxic to aquatic life with long lasting effects. Chronic M-Factor of 10

12. Evaluation of additional hazards

12.1 Hazardous to the ozone layer

12.1.1 Short summary and overall relevance of the provided information on ozone layer hazard

The atmospheric degradation half-life of bixlozone was calculated to be 0.498 d (12 hour days) based on an OH radical concentration of 1.5×10^6 cm³ on a 12-hour day basis. Due to its degradation in air and chemical structure, bixlozone is considered to have a low risk of long-range transport and, therefore, no hazard to the ozone layer.

12.1.2 Comparison with the GB CLP criteria

A substance shall be classified as hazardous to the ozone layer (Category 1) if the available evidence concerning its properties and its predicted or observed environmental fate and behaviour indicate that it may present a danger to the structure and/or the functioning of the stratospheric ozone layer. Any substances having an Ozone Depleting Potential (ODP) of \geq 0.005 of the substances currently listed in Annex I of CLP should be classified as hazardous to the ozone layer.

There are no data available to suggest that bixlozone presents a danger to the ozone layer and the substance is not currently listed as having an Ozone Depleting Potential (ODP) in Annexes to the Montreal Protocol. However, there is no ODP available for bixlozone.

12.1.3 Conclusion on classification and labelling for hazardous to the ozone layer

Not classified (data lacking)

13. Additional labelling

No additional labelling is proposed.

It should be noted that the GB evaluation of bixlozone as a pesticide is not finalised.

14. References (non-confidential)

Nb. Confidential references are in a separate Annex (Annex II).

General:

Reference	Author and date
Guidance on the application of the CLP criteria: Guidance to regulation (EC) No 1272/2008 on classification, labelling and packaging (CLP) of substances and mixtures.	ECHA (2017)
Version 5.0	
Published	
Available at <u>https://echa.europa.eu/</u>	

Physico-chemistry:

DAR	Reference	Author and date
B.2.2	Title: F9600: Vapour Pressure GLP	Cowlyn, N (2016a)
	Unpublished	
B.2.5	Title: F9600: Water Solubility GLP Unpublished	Cowlyn, N (2016b)
B.2.7	Title: F9600: Partition Coefficient(n-octanol/water) GLP Unpublished	Cowlyn, N (2016c)

B.2.1	F9600: Physicochemical Properties	Cowlyn, N
B.2.3	GLP	(2017a)
B.2.12	Unpublished	
B.2.3	FOCOD Taskaisek Assesses	Courter N
D.2.3	F9600 Technical: Appearance	Cowlyn, N (2017b)
	GLP	
	Unpublished	
B.2.9.1	Title: F9600: Flammability (solids)	Cowlyn, N
	GLP	(2017e)
	Unpublished	
B.2.9.2	Title: F9600: Auto-Ignition Temperature	Cowlyn, N (2017f)
	GLP	
	Unpublished	
B.2.11	Title: F9600: Explosive Properties	Cowlyn, N (2017g)
	GLP	
	Unpublished	
B.2.13	Title: F9600: Oxidising Properties	Cowlyn, N
	GLP	(2017h)
	Unpublished	
B.2.14	Title: F9600: Relative Density	Cowlyn, N (2017i)
	GLP	
	Unpublished	

B.6.3.4 B.6.5.2	Histopathology of Preclinical Toxicity Studies. Interpretation and Relevance in Drug Safety Studies (4 th Edition).	Greaves, P (2012)
B.2.8	F9600: Waiver Request for Study on Dissociation Constants in Water Non-GLP, Unpublished	Guo, J (2018)

Human Health:

DAR	Reference	Author and date	
B.6.6.2.3	An Oral (Gavage) Dose Range-Finding Prenatal Developmental Toxicity Study of F9600 Technical in Rabbits	Anon, (2014a)	
	Non-GLP		
B.6.7.1	An Oral (Gavage) Dose Range Finding Acute Neurotoxicity Study of F9600 Technical in Rats	Anon, (2014b)	
	Non-GLP		
B.6.7.1	An Oral (Gavage) Acute Neurotoxicity Study of F9600 Technical in Rats	Anon, (2014c)	
	GLP		
B.6.2.1	F9600 Technical: Acute Oral Toxicity – Up-and-Down Procedure in Rats	Anon, (2014d)	
	GLP		
B.6.2.2	F9600 Technical: Acute Dermal Toxicity Study in Rats	Anon, (2014e)	
	GLP		
B.6.2.3	F9600 Technical: Acute Inhalation Toxicity in Rats	Anon, (2014f)	
	GLP		
B.6.2.4.2	F9600 Technical: Primary Skin Irritation Study in Rabbits	Anon, (2014g)	
	GLP		

	-	
B.6.2.5.2	F9600 Technical: Primary Eye Irritation in Rabbits.	Anon, (2014h)
	GLP	
B.6.2.6	F9600 Technical: Local Lymph Node Assay (LLNA) in Mice	Anon, (2014i)
	GLP	
B.6.1.1.1	Pharmacokinetics and metabolism of F9600 in male and female Sprague- Dawley rats	Anon, (2014j)
	Non-GLP	
B.6.6.2.4	An Oral (Gavage) Prenatal Developmental Toxicity Study of F9600 Technical in Rabbits	Anon, (2015a)
	GLP	
B.6.3.2.1	A 28-Day Oral (Dietary) Toxicity and Toxicokinetic Study of F9600 Technical in Sprague Dawley Rats.	Anon, (2015b)
	GLP	
B.6.3.2.2	A 28-Day Oral (Dietary) Toxicity Study of F9600 Technical in CD-1 Mice	Anon, (2015c)
	GLP	
B.6.3.1.2	A 7-Day Oral (Dietary) Palatability Study of F9600 in CD-1 Mice	Anon, (2015d)
B.6.3.1.1	A 7-Day Oral (Dietary) Palatability Study of F9600 Technical in Sprague- Dawley Rats	Anon, (2015e)
B.6.3.1.3	A 7-Day Oral (Dietary) Palatability Study of F9600 Technical in Beagle Dogs	Anon, (2015f)
B.6.3.3.1	A 90-Day Dietary Combined Toxicity and Neurotoxicity Study of F9600 in Rats	Anon, (2016a)
	GLP	
B.6.6.1.1	A Dose Range Finding Oral (Dietary) Reproduction/Developmental Study of F9600 Technical in Sprague-Dawley Rats	Anon, (2016b)
	Non-GLP	
B.6.6.1.2	A Dietary Two-Generation Reproductive Toxicity Study of F9600 Technical in Rats	Anon, (2016c)

	GLP	
B.6.6.2.1	An Oral (Gavage) Dose Range-Finding Prenatal Developmental Toxicity Study of F9600 in Rats	Anon, (2016d)
	Non-GLP	
B.6.6.2.2	An Oral (Gavage) Prenatal Developmental Toxicity Study of F9600 in Rats	Anon, (2016e)
	GLP	
B.6.3.3.2	A 90-Day Oral (Dietary) Toxicity and Plasma Concentration Measurement Study of F9600 Technical in CD-1 Mice	Anon, (2016f)
B.6.3.1.4	GLP	
B.6.3.2.3	A 7-Day Oral (Capsule) Toxicity Study of F9600 Technical in Beagle Dogs.	
	Non-GLP	
	A 28-Day Oral (dietary) toxicity Study of F9600 Technical in Beagle Dogs	
	GLP	
B. 6.3.3.3	A 90-Day Oral (Capsule) Dose Toxicity Study of F9600 Technical in Beagle Dogs	Anon, (2016g)
	GLP	
B.6.1.1.2	Pharmacokinetics of [14C-Phenyl]F9600 in Male and Female Sprague- Dawley Rats Following Single, Multiple Oral and Intravenous Bolus Doses	Anon, (2016h)
	GLP	
B.6.3.5	A 21-Day study of F9600 by Dermal Application in Sprague-Dawley Rats	Anon, (2016i)
	GLP	

B.6.3.4	A 12-Month Oral (Capsule) Dose Toxicity Study of F9600 Technical in Beagle Dogs	Anon, (2017a)
B.6.5.1	GLP	
	A 2-Year Oral (Dietary) Combined Chronic Toxicity and Carcinogenicity Study with Toxicokinetic Measurements of F9600 Technical in Sprague Dawley Rats	
	GLP	
B.6.5.2	An 18-month Oral (Dietary) Carcinogenicity Study with Toxicokinetic Measurements of F9600 Technical in CD-1 Mice GLP	Anon, (2017b)
B.6.1.1.1	Metabolism of [14C-phenyl]F9600 in male Sprague-Dawley rats - Pilot study	Anon, (2017c)
	Non-GLP	
B.6.1.1.4	Tissue distribution of [14C-Phenyl]F9600 at peak concentration (Tmax) in male and female Sprague-Dawley rats	Anon, (2017d)
	GLP	
B.6.1.1.6	Excretion routes and metabolism of [14C-carbonyl]F9600 in male and female Sprague-Dawley rats following a single oral dose	Anon, (2017e)
	GLP	
B.6.1.2	Mass Balance of [14C-phenyl]-F9600 in male bile duct cannulated Sprague- Dawley rats following a single intravenous dose	Anon, (2017f)
	Non-GLP	
B.6.1.3.1	Comparative in vitro Metabolism of [14C] F9600 (Phenyl and Carbonyl- labelled) in mouse, rat, dog and human hepatocytes	Anon, (2017g)
	Non-GLP	
B.6.1.1.4	Radioactivity concentration in plasma and bone marrow at Tmax after oral administration of [14C-Phenyl]F9600 to Sprague-Dawley rats	Anon, (2017h)
	GLP	
]	

B.6.2.4.1	F9600 Technical: In vitro skin irritation test (SIT) using the EpidermTM skin model	Anon, (2018a)
	GLP	
B.6.4.2	In Vivo Mammalian Erythrocyte Micronucleus Assay in Rats with F9600 Technical	Anon, (2018b)
	GLP	
B.6.1.1.6	Metabolism of [14C-carbonyl]F9600 in male and female Sprague-Dawley rats – pilot study	Anon, (2018c)
	Non-GLP	
B.6.1.1.5	Excretion routes and metabolism of [14C-phenyl]F9600 in male and female Sprague-Dawley rats following single or multiple oral doses	Anon, (2018d)
	GLP	
B.6.2.5.1	F9600 Technical: Epiocular™ eye irritation test (EIT) for identifying chemicals not requiring classification and labelling for eye irritation or serious eye damage	Anon, (2018e)
	GLP	
B.6.1.3.2	In Vitro Comparative Metabolism of [14C-Phenyl]-and [14C-Carbonyl]-F9600 in Mixed Gender Mouse, Rat, Dog and Human Cryopreserved Hepatocytes	Anon, (2020)
	GLP	
B.6.4.1.1	Bacterial Reverse Mutation Assay with F9600 Technical	Bruce, S (2018)
B.6.4.1.3	In Vitro Mammalian Cell Gene Mutation Test (L5178Y/TK+/- Mouse Lymphoma Assay) with F9600 Technical	Dutta, A (2018)
B.6.4.1.2	In Vitro Mammalian Chromosomal Aberration Assay in Chinese Hamster	Roy, S (2018)

Ecotoxicology:

DAR Reference:	Author and date
----------------	-----------------

B.9.2.1	F9600: Acute Toxicity to Rainbow Trout (<i>Oncorhynchus mykiss</i>)	Anon, 2015g				
B.9.2.1	F9600: Acute toxicity to Bluegill Sunfish (<i>Lepomis macrochirus</i>)	Anon, 2015h				
B.9.2.1	F9600: Acute toxicity to Sheepshead Minnow (Cyprinodon variegatus)	Anon, 2015i				
B.9.2.2.1	F9600 - Early Life-Stage Toxicity Test with Fathead Minnow (<i>Pimephales promelas</i>)					
B.9.2.2.3	F9600 – Flow-Through Bioconcentration and Metabolism study with Bluegill Sunfish (<i>Lepomis macrochirus</i>)	Anon, 2016k				
B.9.2.5.4	2,4-Dichlorobenzoic acid: Assessment of Side Effects on the Larvae of the Midge, <i>Chironomus riparius</i> , with the Laboratory Test Method – Spiked Sediment Test	Dabrunz, A. (2018a)				
B.9.2.5.4	4-Carboxyl-F9600: Assessment of Side effects on the Larvae of the Midge, <i>Chironomus riparius</i> , with the Laboratory Test Method – Spiked Sediment Test					
B.9.2.5.4	 .4 F9600-Dimethyl-Malonamide: Assessment of Side Effects on the Larvae of the I Midge, <i>Chironomus riparius</i>, with the Laboratory Test Method-Spiked Sediment Test 					
B.9.2.7	4-Carboxyl-F9600: Growth Inhibition of <i>Myriophyllum spicatum</i> in a Water/Sediment System	Dill, M. (2018a)				
	F9600-Dimethyl-malonamide: Growth Inhibition of <i>Myriophyllum spicatum</i> in a Water/Sediment System					
B.9.2.7	F9600: 7-Day Toxicity Test with Duckweed (<i>Lemna gibba</i>)					
B.9.2.7	F9600: Growth Inhibition of the Aquatic Macrophyte <i>Myriophyllum spicatum</i> in a water-sediment system	Kirkwood, A. (2015b)				
B.9.2.7	2,4-Dichlorobenzoic Acid – Growth Inhibition of the Aquatic Macrophyte <i>Myriophyllum spicatum</i> in a Water-Sediment System	Kirkwood, A. (2018)				
B.9.2.4.1	2,4-Dichlorobenzoic acid: Toxicity to the Water Flea <i>Daphnia magna</i> Straus under Laboratory Conditions (Acute Immobilisation Test-Static)	Kümmich, F (2018)				

B.9.2.5.2	F9600: Life-Cycle Toxicity Test with Mysids (<i>Americamysis bahia</i>)	Marini, J.P. (2017)
B.9.2.4.2 B.9.2.4.2	 F9600 Technical - Acute Toxicity to Freshwater Isopods (<i>Caecidotea communis</i>) Under Static Conditions F9600-3-OH Propanamide – Acute Toxicity to Mysids (<i>Americamysis bahia</i>) Under Static Conditions 	Mason, J (2017a)
B.9.2.4.2	F9600 Technical – Acute Toxicity to Midge (<i>Chironomus riparius</i>) Under Static Conditions	Mason, J (2017d)
B.9.2.4.2	F9600 Technical – Acute Toxicity to Caddisflies (<i>Pycnopsyche gentilis</i>) Under Static Conditions	Mason, J (2018a)
B.9.2.4.2	F9600-Dimethyl-Malonamide – Acute Toxicity Test with Water Fleas (<i>Daphnia magna</i>) Under Static Conditions F9600 Technical - Acute Toxicity to Mayflies (<i>Hexagenia limbata</i>) Under Static Conditions	Mason, J (2018b)
B.9.2.4.2	F9600 Technical: Acute Toxicity to Freshwater Beavertail Fairy Shrimp (<i>Thamnocephalus platyurus</i>) Under Static Conditions 2,4-Dichlorobenzoic acid – Acute Toxicity to Mysids (<i>Americamysis bahia</i>) Under Static-Renewal Conditions	Mason, J. (2018c)
B.9.2.4.2	4-Carboxyl-F9600 – Acute Toxicity to Mysids (<i>Americamysis bahia</i>) Under Static Conditions Study no. 72809215. GLP, unpublished.	Mason, J. (2018d)
B.9.2.4.2	F9600-Dimethyl-Malonamide – Acute Toxicity to Mysids (<i>Americamysis bahia</i>) Under Static Conditions	Mason, J. (2018e)
B.9.2.6.2	2,4-Dichlorobenzoic acid: Toxicity to the Marine Diatom <i>Skeletonema costatum</i> under Laboratory Conditions	Obert-Rauser, P (2018b)
B.9.2.6.1	2,4-Dichlorobenzoic acid: Toxicity to the Single Cell Green Alga Pseudokirchneriella subcapitata Hindäk under Laboratory Conditions	Obert-Rauser, P. (2018a)

B.9.2.4.1	F9600: Acute Toxicity to Water Fleas (<i>Daphnia magna</i>) Under Static Conditions	Shaw, A.C (2015) Shaw, A.C. (2016a)	
B.9.4.2	F9600: Acute Toxicity to Mysids (<i>Americamysis bahia</i>)		
B.9.2.5.4	F9600 Technical - Toxicity Test Exposing Sediment-Dwelling Midges (<i>Chironomus riparius</i>) to a Test Substance Applied to Sediment Under Static Conditions	Snow, B. (2019)	
B.9.2.6.1	F9600: 96-Hour Toxicity Test with the Freshwater Green Alga, Pseudokirchneriella subcapitata	Softcheck, K.A. (2015a)	
B.9.2.6.1		Softcheck, K.A. (2017)	
B.9.2.6.2		Softcheck, K.A. (2017b)	
B.9.2.6.1		Softcheck, K.A. (2018a)	
B.9.2.6.1	F9600-Dimethyl-Malonamide: 96-Hour Toxicity Test with the Freshwater Green Alga, <i>Raphidocelis subcapitata</i>	Softcheck, K.A. (2018b)	
B.9.2.6.2	 6.2 4-Carboxyl-F9600 - 96-Hour Toxicity Test with the Marine Diatom, Skeletonema costatum 		
B.9.2.6.2		Softcheck, K.A. (2018d)	
B.9.2.5.4		Stags, M.L. (2016)	

15. Annexes

Annex I – Summary of the aquatic toxicity of degradants of bixlozone

The available acute toxicity data available for the degradants of bixlozone (2,4dichlorobenzoic acid, 4-Carboxyl-F9600, F9600-dimethyl-malonamide and F9600-3-OHpropanamide) considered relevant under Regulation 1107/2009 are summarised below in Table 1. This information is included for information only, none of the degradants exhibit equivalent toxicity to bixlozone. Therefore they are not considered to impact the hazard classification of bixlozone.

Table 1: Summary of toxicity data available for the degradants of bixlozone

Test substance	Test organism	Test system	Endpoint (mg/L)		Reference
		Acute toxic	city to invertebrate	S	
2,4- dichlorobenzoic acid	Daphnia magna	Static, 48- hours	EC ₅₀	> 100 nom.	Kümmich (2018)
4-Carboxyl- F9600	Daphnia magna	Static, 48- hours	EC ₅₀	> 100 nom.	Mason (2018a)
F9600- dimethyl- malonamide	Daphnia magna	Static, 48- hours	EC ₅₀	> 100 nom.	Mason (2018b)
2,4- dichlorobenzoic acid	Americamysis bahia	Static renewal, 96-hours	LC ₅₀	> 100 nom.	Mason (2018c)
4-Carboxyl- F9600	Americamysis bahia	Static, 96- hours	LC ₅₀	> 100 nom.	Mason (2018d)
F9600- dimethyl- malonamide	Americamysis bahia	Static, 96- hours	LC ₅₀	100 nom.	Mason (2018e)

Test substance	Test organism	Test system	Endpoint (mg/L)		Reference
F9600-3-OH- propanamide	Americamysis bahia	Static, 96- hours	LC ₅₀	22 m.m.	Mason (2017a)
	Тох	icity to sedim	ent dwelling invert	ebrates	
2,4- dichlorobenzoic acid	Chironomus riparius	Static, water- sediment system (dosed via sediment),	EC ₁₀ / EC ₂₀	 ≥ 104.88 mg /kg sed. dw m.m. (93.26 mg/L) 104.88 mg /kg sed. 	((2018a)
		28-days		dw m.m (93.26 mg/L)	
4-Carboxyl- F9600	Chironomus riparius	Static, water- sediment system (dosed via	EC ₁₀ / EC ₂₀	≥ 494.54 mg /kg sed. dw m.m (42.75 mg/L)	Dabrunz (2018b)
		sediment), 28-days	NOEC	494.54 mg /kg sed. dw m.m. (42.75 mg/L)	
F9600- dimethyl- malonamide	Chironomus riparius	Static, water- sediment system (dosed via sediment),	EC ₁₀ / EC ₂₀	≥ 502 mg /kg sed. dw ini. (89.5 mg/L)	Dabrunz (2018c)
		28-days	NOEC	502 mg /kg sed. dw ini. (89.5 mg/L)	
		l Tox	icity to algae	1	
2,4- dichlorobenzoic	Raphidocelis subcapitata	Static, 96- hours	ErC ₅₀	90.1 / 100 nom	Obert
acid			NOErC EyC50	31.3 / 31.3 nom 60.6 / 59.9 nom	-Rauser (2018a)
			NOE _y C	31.3 / 31.3 nom	

Test substance	Test organism	Test system	Endpoint (mg/L)		Reference
				(72 hours / 96 hours)	
4-Carboxyl- F9600	Raphidocelis subcapitata	Static, 96- hours	E_rC_{50} E_rC_{20} E_rC_{10} NOE_rC E_yC_{50} E_yC_{20} E_yC_{10}	77 / 71 m.m. 63 / 56 m.m. 56 / 51 m.m. 24 / 49 m.m. 62 / 65 m.m. 49 / 52 m.m. 42 / 44 m.m.	Softcheck (2018a)
			NOEyC	24 / 49 m.m. (72 hours / 96 hours)	
F9600- dimethyl- malonamide	Raphidocelis subcapitata	Static, 96- hours	E_rC_{50} E_rC_{20} E_rC_{10} NOE_rC E_yC_{50} E_yC_{20} E_yC_{10} NOE_yC	71 / 71 m.m. 57 / 56 m.m. 53 / 52 m.m. 49 / 49 m.m. 69 / 67 m.m. 56 / 53 m.m. n.r. / n.r. 49 / 49 m.m. (72 hours / 96 hours)	Softcheck (2018b)
F9600-3-OH- propanamide	Raphidocelis subcapitata	Static, 96- hours	ErC ₅₀ ErC ₂₀ ErC ₁₀ NOErC	> 84 / > 84 m.m. 61 / ≥84 m.m. 45 / - ª m.m. 33 / 33 m.m.	Softcheck (2017a)

Test substance	Test organism	Test system	Endpoint (mg/L)		Reference
			E _y C ₅₀	63 / 66 m.m.	
			E _y C ₂₀	43 / - ª m.m.	
			E _y C ₁₀	38 / - ^a m.m.	
			NOE _y C	33 / 33 m.m.	
				(72 hours / 96 hours)	
2,4- dichlorobenzoic acid	Skeletonema costatum	Static, 96- hours	ErC ₅₀	> 100 / > 100 nom.	Obert
			ErC ₂₀	> 100 / > 100 nom.	-Rauser (2018b)
			ErC ₁₀	> 100 / > 100 nom.	
			NOErC	31.3 / 31.3 nom.	
			E _y C ₅₀	> 100 / > 100 nom.	
			E _y C ₂₀	n.r. / n.r.	
			E _y C ₁₀	n.r. / n.r.	
			NOE _y C	31.3 / 31.3 nom.	
				(72 hours / 96 hours)	
4-Carboxyl- F9600	Skeletonema costatum	Static, 96- hours	ErC ₅₀	86 / > 110 m.m.	Softcheck (2018c)
			ErC ₂₀	59 / 67 m.m.	
			ErC ₁₀	n.r. / 55 m.m.	
			NOErC	48 / 48 m.m.	
			E _y C ₅₀	75 / 83 m.m.	
			E _y C ₂₀	n.r. / 60 m.m.	
			E _y C ₁₀	n.r. / n.r.	
			NOE _y C	48 / 48 m.m.	
				(72 hours / 96 hours)	

Test substance	Test organism	Test system	Endpoint (mg/L)		Reference
F9600-	Skeletonema	Static, 96-	ErC ₅₀	> 100 / > 100 m.m.	Softcheck
dimethyl- malonamide	costatum	hours	ErC ₂₀	> 100 / > 100 m.m.	(2018d)
			ErC ₁₀	> 100 / > 100 m.m.	
			NOErC	48 / 48 m.m.	
			E _y C ₅₀	> 100 / > 100 m.m.	
			E _y C ₂₀	n.r. / > 100 m.m.	
			E _y C ₁₀	51 m.m. / n.r.	
			NOE _y C	48 / 48 m.m.	
				(72 hours / 96 hours)	
F9600-3-OH-	Skeletonema costatum	Static, 96- hours	E _r C ₅₀	> 85 ^b m.m.	Softcheck (2017b)
propanamide			ErC ₂₀	47 ^b m.m.	
			ErC ₁₀	32 ^b m.m.	
			NOErC	13 ^b m.m.	
			E _y C ₅₀	70 ^b m.m.	
			E _y C ₂₀	30 ^b m.m.	
			E _y C ₁₀	16 ^b m.m.	
			NOE _y C	13 ^b m.m.	
				(72 hours)	
	1	Toxicity to a	aquatic macrophyte	S	1
2,4- dichlorobenzoic acid	Myriophyllum spicatum	Static renewal, water- sediment system (dosed via water), 14-days	E_rC_{50} , shoot length	24 m.m.	Kirkwood (2018)
			E_rC_{20} , shoot length	4.3 m.m.	
			$E_rC_{10, shoot length}$	1.1 m.m.	
			NOErC, shoot length	0.92 m.m.	
			E_yC_{50} , shoot length	11 m.m.	

Test substance	Test organism	Test system	Endpoint (mg/L)		Reference
			$E_y C_{20, \ shoot \ length}$	3 m.m.	
			$E_y C_{10, \text{ shoot length}}$	1.1 m.m.	
			NOE_yC , shoot length	3.3 m.m.	
4-Carboxyl- F9600	Myriophyllum spicatum	Static renewal, water- sediment system (dosed via water), 14-days	E_rC_{50} , shoot length	>1.3 m.m.* 1.3 m.m.	Dill (2018a)
			$NOE_{y}C$, shoot length	1.3 m.m.	
F9600- dimethyl- malonamide	Myriophyllum spicatum	Static renewal, water- sediment system (dosed via water), 14-days	ErC50, shoot wet weight	> 100 nom.	Dill (2018b)
			$E_r C_{20, shoot wet}$ weight	17.9 nom.	
			E_rC_{10} , shoot wet weight	6.09 nom.	
			NOErC, shoot length	3.05 nom.	
			$E_yC_{50,\ plant\ dry}$ weight	38.7 nom.	
			E_yC_{20} , plant dry weight	5.69 nom.	
			$E_yC_{10, plant dry}$ weight	n.r.	
	: nom - nominal		NOE_yC , shoot length	3.05 nom.	ini – initial

n.r. = not reported; nom. = nominal concentration; *m.m.* = mean measured concentration; ini. = initial measured concentration

^a Suitable values for risk assessment not available for effects at 96-hours

^b The endpoints relate to the data at 72-hours, as the results at 96-hours are not considered suitable

*corrected endpoint – highest endpoint with < 50% effects and without the presence of foaming/precipitate/turbidity in the test solutions. Given precipitate was noted in the stock and 31.3 mg/L solution, and turbidity at 9.77 mg/L, it is deemed more appropriate to derive an E_rC_{50} of >1.3 mg/L (mean measured).

Further information

For information about health and safety, or to report inconsistencies or inaccuracies in this guidance, visit <u>the Agency website</u>.

You can order the Agency priced publications at the Agency books website.

the Agency priced publications are also available from bookshops.

This publication is available on the Agency website.

© Crown copyright If you wish to reuse this information visit the Agency website for details.

Published by the Health and Safety Executive